МИНИСТЕРСТВО ГЕОЛОГИИ С.С.С.Р ВСЕСОЮЗНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ МИНЕРАЛЬНОГО СЫРЬЯ (ВИМС)

Научный совет по аналитическим методам

Химико-спектральные методы Инструкция № 198-XC

ТЕЛЛУР

Москва 1982 Выписка на примара Манистра геологии № 496 от 29 октября 1976 г.

4. При внеожнени анализов геологических проб применять методи, рекомендование ГОСТами и Научним советом по эна аналитическим методам.

Воспроизводимость и правильность результатов анадиза руд и гориех пород опенивается согнасие Методическим указавижи НСАМ "Методи дабораторного контроля качества анадитических работ".

<u>Повычание</u>: Разиложение инструкций на местах во избелание возможных нескажений разровается только фотографическим ими электропрафическим способом.

министерство геологии ссср Научный совет по аналитическим методам при ВИМСе

Химико-спектральные методы Инструкция № 198-XC

Согласовано
Зам. начальника
Технического управления
Мингео СССР
И.И.Малков

ЭКСТРАКЦИОННОЕ АТОМНО-АБСОРБЦИОННОЕ ОПРЕДЕЛЕНИЕ ТЕЛЛУРА В МИНЕРАЛЬНОМ СЫРЬЕ

Всесоюзный научно-исследовательский институт минерального сырья (ВИМС)

Москва, 1982

В соответствии с приказом Мингео СССР № 496 от 29.Х.76 г. инструкция № 198-XC рассмотрена и рекомендована Научным советом по аналитическим методам для анализа рядовых проб — И категория.

(Протокол № 39 от 15.1У.82 г.)

Председатель НСАМ

Председатель секции спектральных методов

Ученый секретарь

Г.В.Остроумов

В.В.Королев

Р.С.Фридман

Инструкция № 198-XC рассмотрена в соответствии с приказом Мингео СССР № 496 от 29.X.76г. научным советом по аналитическим методам (протокол № 39 от 15.IV.82г.) и утверждена ВУМСом с введением в действие. с I декабря 1982 г.

ЭКСТРАКЦИОННОЕ АТОМНО-АБСОРЕЦИОННОЕ ОПРЕДЕЛЕНИЕ ТЕЛЛУРА В МИНЕРАЛЬНОМ СЫРЬЕ^X)

Сущность метода

Методика экстракционного атомно-абсороционного определения теллура в минеральном сирье, разработанная И.И.На-заренко, И.В.Кисловой и Г.Е.Каленчук^{3,4}, заключается в кислотном разложении пробы, отделении теллура от Fe, Cu, Au, Tl, Se, Cr VI, Ge IV, Mo VI, Bi, Sb, Sn, Co, Ni, Pb, Zn двумя последовательными экстракциями метилизобутилкетоном из 5 М по соляной кислоте раствора и измерении атсмной абсороции теллура.

Перед первой экстракцией ТеІУ окисл. Михроматом калия до неэкстрагируемого метилизобутилкетоном Те УІ и из раствора, содержащего окислитель ($K_2\text{Cr}_2\text{O}_7$), экстрагируют Fe III, Cr VI, Au III, Tl III, Sn IV, Mo VI, As V, Sb V. Теллур при этом остается в солянокислом растворе. Раствор кипятят для восстановления Те УІ до Те ІУ. Вторая экстракция позволяет достаточно избирательно и количественно извлечь теллур. На этой стадии теллур отделяется от Ві, Nі, Со, Рь, Zn и от основной масси селена. Полученний экстракт распыляют в воздушно-ацетиленовое пламя и измеряют поглощение резонансного излучения теллура. Содержание теллура в пробе рассчитывают по градуировочному графику.

Методика предназначена для определения теллура в минеральном сырье при его содержании от 2.10^{-4} % до 5.10^{-2} %.

Внесена лабораторией физико-химических методов анализа ИМТРЭ.

Состав анализируемого сирья не влияет на экстракцию теллура, а следовательно, и на правильность результатов анализа. Выход теллура после экстракции метилизобутилкетоном в две стадии составляет 90-95%. Потери теллура при первой экстракции учитывают, вводя в формулу для расчета эмпирический коэффициент 1,08; потери при второй экстракции учитывать не нужно, так как анализируемый раствор и растворы шкали построения графика экстрагируют метилизобутилкетоном в одинаковых условиях.

З табл. І даны допустимые расхождения между повторными определениями теллура ($\vec{\mathbb{I}}_{\text{доп}}$), расхождения, полученные авторами инструкции ($\vec{\mathbb{I}}_{\text{эксп}}$), и запас точности ($\mathbf{z} = \mathbf{I}_{\text{доп}}$).

Таблица I Допустимне расхождения 2 (Д $_{\text{доп}}$), фактические расхождения (Д $_{\text{эксп}}$) и запас точности ($^{\text{Z}}$)

Содержание Те, 10	$A_{\text{доп}}$	дэксп	Z
0,02 - 0,049	30	32	0,9
0,01 - 0,019	-40	36	I,I
0,005-0,0099	50	39	I,3
0,002-0,0049	60	45	1,3
0,001- 0,0019	77	50	I,5
0,0005-0,00099	83	56	I,5
0.0002-0.00049	83	64	1,3

Реактивы и материалы

I. Азотная кислота х.ч. d^{X}) = I,40.

^{2.} Соляная кислота х.ч. d = 1,19; 9 M, 5 M и I M растыоры.

З. Этористоводородная кислота ч., 40% ний раствор.

^{4.} Калий двухромовокислый х.ч., І/-ный раствор.

x) d - относительная плотность.

- 5. Метилизобутилкетон ч., насыщенный 5 М нс1. В делительную воронку помещают метилизобутилкетон и 5 М раствор соляной кислоты в отношении I:2, встряхивают I-2 мин и оставляют до разделения фаз. Соляную кислоту отбрасывают, а метилизобутилкетон используют для экстракции.
- 6. Смесь азотной d I,40 и соляной d I,19 кислот в отношении I:3 (царская водка).
 - 7. Стандартные растворы теллура.

Раствор А. Навеску 0,0625 г двускиси теллура растворяют при нагревании на водяной бане в 50 мл соляной кислоты d I,10. Раствор переносят в мерную колбу на 500 мл, доливают водой до метки и тщательно перемешивают. В I мл раствора д содержится 100 мкг теллура.

<u>Раствор Б.</u> В мерную колбу на 100 мл помещают 10 мл раствора А, доливают до метки I М раствором соляной кислоти и перемешивают. В <u>I мл раствора Б содержится 10 мкг теллура</u>.

Аппаратура и принадлежности

- I. Атомно-абсорбционный спектрофотометр Перкин-Элмер, модель 403 или другой прибор, близкий по аналитический нараметрам.
- 2. Спектральные ламин с полым катодом, излучающие спектр теллура.
 - 3. Ацетилен в баллонах.
 - 4. Редуктор к баллонам.
 - 5. Фильтр для очистки ацетилена.

Ход анализа

Разложение пробы

Навеска составляет 0,I г для предполагаемых содержаний теллура $\mathbf{n.10}^{-2} - \mathbf{n.10}^{-3}$ % и I-2 г для содержаний $\mathbf{n.10}^{-4} - \mathbf{n.10}^{-5}$ %.

Сульбидные руды раздагают царской водкой (10-20 мл) при нагревании на плитке. Раствор упаривают до влажных солей, остаток растворяют при нагревании в ІОмл І М раствора нс1, раствор фильтруют в стакан через фильтр с белой лентой, не-

растворившийся остаток промывают на фильтре I M раствором нс1 (5 мл).

Сликатные горные породы и другие материали, содержащие кремний, разлагают в платиновых чашках. К навеске в чашке приливают по 10-20 мл (в зависимости от величини навески) фтористоводородной и азотной кислот, выпаривают до влажних солей, переносят содержимое чашки в стакан (смывал остаток водой), добавляют 3 мл нСl d I, I9 и снова выпаривают до влажных солей. Остаток растворяют при нагревании в IC мл праствора нСl и продолжают как при анализе сульфидных руд.

2. Экстракционное концентрирование

К фильтрату в стакане добавляют 0,5 мл 1%—ного раствора K_2 Сг $_2$ О $_7$ и оставляют на 10 мин для окисления Те IУ до Те УІ. Концентрацию соляной кислоти в растворе доводят до 5 М, добавляя равный объем (15 мл) Э М раствора НСІ. Раствор переносят в делительную воронку, добавляют 10 мл метилизобутилкетона, насыщенного 5 М НСІ, и встряхивают 30 сек. Органическую фазу отбрасывают. Солянокислый раствор переносят в стакан и кипятят в течение 10 мин для разрушения окислителя и восстановления Те УІ до Те ІУ. Остывший раствор помещают в делительную воронку и экстрагируют теллур метилизобутилкетоном (5 мл) в течение І мин. Неорганическую фазу отбрасывают, экстракт переносят в пробирку и определяют теллур в тот же день.

3. Измерение атомной абсороции

Экстракт, содержащий теллур, распыляют в воздушно-ацетиленовое пламя и измеряют атомную абсорбцию теллура (линия 214,3 нм) на атомно-абсорбционном спектрофотометре. При измерении на приборе Перкин-Элмер, модель 403, необходимо соблюдать следующие условия: ток лампи с полым катодом — 30 ма; ширина щели — 0,3 мм; скорость потока ацетилена для органических растворителей — 2,4 л/мин (возможный минимальный предел); скорость потока воздуха 12,4 л/мин. Режим работы прибора устанавливают по метилизобутилкетону, насыщенному 5М нс1.

Закончив измерения, промывают распылительную систему водой. Содержание теммура в экстракте определяют по градупровочному грайику.

4. Построение градуировочного графика

В делительные воронки помещают 0; 0,25; 0,5; 1,0; 1,5; 2,5 мл стандартного раствора Б (0; 2,5; 5; 10; 15; 25 ккг теллура), доливают до 30 мл 5 М раствором нС1, экстрагируют теллур и измеряют атомную абсорбцию как описано выше. Строят градуировочный график, откладывая по оси абсцисс содержание теллура (мкг/мл) в экстракте, по оси ординат — атомную абсорбцию.

5. Вичисление результатов анализа

Содержание теллура в пробе (С, с) рассчитывают но формуле:

$$C = \frac{a. \ v. K. 100}{H. 10^G}$$
%, где

- а содержание теллура в экстракте, найденное по граду провочному графику, мкг/мл;
- V объем экстракта (5 мл);
- к эмпирический коэффициент для учета потери теллура при первой экстращии (К = 1,08);
- И навеска пробы, г.

Техника безопасности

При работе с высоким напряжением и горючим газом необходимо строго соблюдать меры безопасности, предусмотренные инструкцией $^{\rm L}$. При всех химических операциях следует придерживаться общих правил работы в химической даборатории.

Литература

- I. Инструкция по технике безопасности при лабораторник работах, Госгеолтехиздат, М., 1961.
 - 3. Методы лабораторного контроли качества аналитичесных

- работ. Методические указания НСАМ № 9, М., ВИМС, 1975.
- З. Назаренко И.И., Каленчук Г.Е., Кислова И.В. Атомноабсорбционное определение теллура в рудах после экстракции метилизобутилкетоном. Ж. аналит.химии, 31, 498 (1976).
- 4. Назаренко И.И., Кислова И.В., Рабинович Б.С. Экстраздионное концентрирование техлура метилизобутилкетоном в знашизе руд и минералов. Ж.аналит.химии, 30, 1389 (1975).

Зъятие из употребления инструкции	Заменяющие их инструкции
19 52-X 19 53-X	№ I03-X
₽ 92 - X	№ II3-X
№ 90-X	№ II5-X
№ 9 - A©	₽ II6-HΦ
.% I3±X	№ II9-X
₩ 107 - C	№ I4I-C
# 6−J	₩ I50-C
∌ 95⊸i⊅	∯ I58–90
⇒ 69–2	№ IS3-X
23 78-X	\$ 174-X
19 . 102 –3	₩ 177-C

"JTBEPTIAD"

Выссью Елучим сометси но вначетаческим методем 1.ИІ.1974 г. Начельные управления взучноисследовательских организаций Вингео СССР, член колметия 25 декабря 1974 г. Н.П. ЛАВЕРОВ

KIACCKOEKAHES IAEOPATOPINIX METOJOB AHANSA MISHEPARAHOTO CEPLE

Katero- pha	ress Huricedeveno ses-	Воспроизводимость методов анализа	Rosöceneest L göeyetemony CDequeneeste TETECHY OTEMORESEE
I	Ocodo Toussia analus	Средневадратичное отденение результатов опреде- нения должно бить в три раза менью допустамого среднежиздратичного отденения, регимментируемого виструкцией внутрикасораторного контроля (см. При- дожение)	0,33
п	Cerens Surroll	Средноквадратичене отклонения результатов опреде- пения отномних компонентов не должен превижеть допустимих среднемвадратиченх отклонения	I
	Сумма номпонентов, если определен все колпоненти при содержании какаого вине 0,1%, долина лекать в нетервале 99,5±1,50%		
		Сумма помновентов, эсля определены все комновенты пок содержания каждого выне 0,01%, дожима лежать в натервале 99,9±1,50%	
		Средневрадовличные отклонения результатов опреде- новым симвыми (содерхниче более 5%) компонентов дожден быть в три раза неньые допустаного опреде- кладовличного отклонения	0,33
		Средневаздратичане отклонения результатов опреде- повия отдежьных компонентов не дожини превызать попустимого среднеказдратичного отклонения	I
		Сумма помпонентов, если определени все компоненти при содержании памлого мине 0,1%, долина лежать в интервале 99,5±0,80%	
		Суный помпонентов, есля определени все компоненти при содержании какдого выне 0,01%, долина лечать в интеражне 99,9±0,80%	
互	роди же Сектер	Срежнекваратичное отклонение результатов опреде- лений не должно провымать допустимих среднеквадра- тичных отклонений	I
IJ	ndowartor Tolescent Tolescent	Среднекварратичние этилонения результатов опреде- дения могут превызать допустные среднеквадовтичное отклонение не более, чем в два раза (по особой до- говоренности с заказчиком)	I–2
J	мических проб пред точкий пред точкий	Среднеквадратичные отклонения результатов опреде- ления должны быть в два раза меньие допустимых среднеквадратичных отклонения	0,5
n	moo Leormaneckax Yasaas budoma	Среднекиздоатичние отклонении результатов определе- ния не должин превышать удвоемию величниу допусти- мого среднеказдратичного отклонения	2
YII	vastes Cleomety Hotánovads—		Воспроваводи- мость опроделе- ная 4-10 изфр (меторалов) на ожи пори- док содержаний с доворитольной вероятностью 687
JI	Katocyboxneg anales		томиротъ опре-

I) См. Методические указакия "Методи ласораторного всетроля начества аналитических расот", М., БРИС, 1975г.