Федеральное государственное унитарное предприятие ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ МЕТРОЛОГИИ им. Д.И.МЕНДЕЛЕЕВА (ФГУП «ВНИИМ им. Д.И.МЕНДЕЛЕЕВА)

Федерального агентства по техническому регулированию и метрологии

УТВЕТЖДАЮ
Лиректор
ФГУП «ВНИНМ им. Д.И.Менделеева»
Н.И.Ханов

РЕКОМЕНДАЦИЯ

Государственная система обеспечения единства измерений КАЛОРИМЕТРЫ СЖИГАНИЯ С БОМБОЙ (ЖИДКОСТНЫЕ)
Методика поверки

МИ 2096-2009

Руководитель лаборатории калориметрии ФГУП «ВНИИМ им. Д.И.Менделеева»

_ Е.Н.Корчагина

11 февраля 2009 г.

Санкт-Петербург 2009

ПРЕДИСЛОВИЕ

РАЗРАБОТАНА Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский институт метрологии им. Д.И.Менделеева» (ФГУП «ВНИИМ им. Д.И.Менделеева») Федерального агентства по техническому регулированию и метрологии

ИСПОЛНИТЕЛИ: Корчагина Е.Н., к.т.н. (руководитель темы), Беляков В.И.

УТВЕРЖДЕНА ВНИИМ им. Д.И.Менделеева 11 февраля 2009 г.

ЗАРЕГИСТРИРОВАНА ВНИИМС 20 февраля 2009 г.

ВЗАМЕН МИ 2096-2003

Настоящая рекомендация не может быть полностью или частично воспроизведена, тиражирована и распространена без разрешения ФГУП «ВНИИМ им.Д.И.Менделеева»

СОДЕРЖАНИЕ

		Стр.
1	Область применения	1
2	Нормативные ссылки	1
3	Обозначения	3
4	Общие положения	4
5	Операции поверки	5
6	Средства поверки	5
7	Условия поверки и подготовка к ней	6
8	Требования безопасности	8
9	Проведение поверки	9
10	Определение характеристик погрешности	
	энергетического эквивалента	11
11	Оформление результатов поверки	14
	Приложение А (справочное) Перечень стеклянной	
	лабораторной посуды, применяемой при поверке	16
	Приложение Б (справочное) Перечень реактивов и	
	материалов, применяемых при поверке	17
	Приложение В (справочное) Свойства веществ и	
	материалов, применяемых при поверке	18
	Приложение Г (обязательное)Форма протокола	
	поверки	19
	Приложение Д (справочное) Пример протокола	
	обработки результатов измерений энергетического	
	эквивалента	21
	Приложение Е (справочное) Пример расчета среднего	ı
	значения энергетического эквивалента и погрешности	23
	Библиография	25

РЕКОМЕНДАЦИЯ

Государственная система обеспечения единства измерений. |

КАЛОРИМЕТРЫ СЖИГАНИЯ С БОМБОЙ МИ 2096-2009

(ЖИДКОСТНЫЕ). Методика поверки |

Дата введения в действие: 2009-06-01

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящая рекомендация распространяется на калориметры сжигания с бомбой (жидкостные) (далее - калориметры), в которых измеряемая величина – исправленный подъем температуры - связана с количеством введенной в калориметр энергии через коэффициент пропорциональности, называемый энергетическим эквивалентом, нормируемые пределы допускаемой относительной погрешности (или расширенная неопределенность) определения которого не превышают 0,1 %, и устанавливает методику их первичной и периодической поверок в процессе эксплуатации, при ввозе в страну (для импортных), после ремонта.

Первичную поверку осуществляет предприятие - изготовитель при выпуске калориметров.

Рекомендация предназначена для применения в аналитических лабораториях энергетической, химической, угольной, нефтехимической, металлургической и других отраслей промышленности, а также в лабораториях научно-исследовательских институтов.

Межповерочный интервал – 1 год.

2 НОРМАТИВНЫЕ ССЫЛКИ

2.1 В настоящей рекомендации использованы нормативные ссылки на следующие стандарты:

1

ГОСТ 8.026-96 ГСИ. Государственная поверочная схема для средств измерений энергии сгорания и удельной энергии сгорания (калориметров сжигания)

ГОСТ 8.395-80 ГСИ. Нормальные условия измерений при поверке. Общие требования

ГОСТ 949-73 Баллоны стальные малого и среднего объема для газов на $P \le 19,6 \text{ M}\Pi a \ (200 \text{ krc/cm}^2)$. Технические условия

ГОСТ 4328-77 Реактивы. Натрия гидроокись. Технические условия

ГОСТ 5583-78 Кислород газообразный технический и медицинский. Технические условия

ГОСТ 6709-72 Вода дистиллированная. Технические условия

ГОСТ 8505-80 Нефрас-С 50/170. Технические условия

ГОСТ 9147-80 Посуда и оборудование лабораторные фарфоровые.

Технические условия

ГОСТ 12026-76 Бумага фильтровальная лабораторная. Технические условия

ГОСТ 15150-69 Машины, приборы и другие технические изделия. Исполнения для различных климатических районов. Категории, условия эксплуатации, хранения и транспортирования в части воздействия климатических факторов внешней среды

ГОСТ 18300-87 Спирт этиловый ректификованный технический. Технические условия

ГОСТ 24363-80 Реактивы. Калия гидроокись. Технические условия

ГОСТ 25336-82 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры

ГОСТ 29227-91 Посуда лабораторная стеклянная. Пипетки градуированные. Часть 1. Общие требования

ГОСТ 29251-91 Посуда лабораторная стеклянная. Бюретки. Часть 1. Общие требования

3 ОБОЗНАЧЕНИЯ

В настоящей рекомендации использованы следующие обозначения:

- ЭЭ энергетический эквивалент калориметра;
- C_{i} i й результат измерения энергетического эквивалента;
- \overline{C} среднее арифметическое значение результата измерений энергетического эквивалента;
 - S среднее квадратическое отклонение результата измерений ЭЭ;
- S_o относительное среднее квадратическое отклонение результата измерений;
- $\Theta_{\rm c}$ доверительные границы неисключенной систематической погрешности;

К –коэффициент, зависящий от соотношения случайной и неисключенной систематической погрешностей;

- S_{Σ} суммарное среднее квадратическое отклонение результата измерений ЭЭ;
- $q_{_{\scriptscriptstyle M}}$ энергия сгорания эталонной меры ГСО 5504-90 "Бензойная кислота К-3";
- $\Theta_{\text{м}}$ доверительные границы (P=0,95) погрешности эталонной меры энергии сгорания, составляющие ± 5 кДж/кг;
- $\Delta_{M0} = \frac{\Theta_{M}}{q_{M}} 100\%$ доверительные границы (P=0,95) относительной погрешности эталонной меры энергии сгорания, составляющие $\pm 0,02$ %;
 - △ доверительная граница погрешности результата измерений ЭЭ;
- Δ_o доверительная граница относительной погрешности результата измерений ЭЭ;

N – число измерений.

4 ОБЩИЕ ПОЛОЖЕНИЯ

- 4.1 Энергетический эквивалент калориметра (ЭЭ) основной параметр калориметра, который представляет собой теплоемкость калориметрической системы. Его определяют как количество энергии, необходимое для изменения температуры этой системы на 1 градус (возможно измерения температуры проводить в условных градусах, в Ом, в мВ и т.п.). Определение энергетического эквивалента равнозначно понятию «градуировка калориметра» (калибровка для импортных средств измерений).
- 4.2 Метод определения энергетического эквивалента основан на сжигании эталонного вещества бензойной кислоты К-3 в калориметрической бомбе при постоянном объеме в среде сжатого кислорода.

Энергетический эквивалент определяют как отношение количества энергии, выделившейся при сгорании навески бензойной кислоты, к изменению температуры воды в калориметрическом сосуде.

- 4.3 Для изопериболических калориметров (т.е. калориметров с изотермической оболочкой) при расчете подъема температуры в калориметрическом сосуде вводят поправку на теплообмен калориметра с окружающей средой (см. п.10.2). Для калориметров с адиабатической оболочкой введение поправки на теплообмен калориметра с окружающей средой не требуется.
- 4.4 Измерения температуры в калориметрическом сосуде разбивают на три периода:
 - начальный, предшествующий сжиганию навески, во время которого температура калориметрической системы изменяется за счет теплообмена с окружающей средой и энергии перемешивания;
 - главный, в котором происходит сгорание навески, передача выделившегося тепла всей калориметрической системе и выравнивание температуры всех ее частей;
 - конечный, в течение которого температура изменяется также за счет теплообмена и энергии перемешивания.

4.5 Процедура поверки, отвечающая ГОСТ 8.026 и изложенная в настоящей рекомендации, заключается в проведении шести опытов сжигания эталонной меры энергии сгорания - ГСО 5504-90 "Бензойная кислота К-3" с целью определения энергетического эквивалента калориметра, нахождения границ доверительного интервала относительной погрешности результата измерений эквивалента и сравнения их с нормированными пределами допускаемой относительной погрешности энергетического эквивалента.

5 ОПЕРАЦИИ ПОВЕРКИ

5.1 При проведении поверки должны быть выполнены следующие операции, указанные в таблице 1.

Таблица 1 – Процедуры поверки

Наименование операции	Номер пункта методики поверки	Проведение операции при		
		первичной поверке	периодической поверке	
Внешний осмотр	9.1	да	да	
Определение энергетического эквивалента калориметра	9.2	да	да	
Определение характеристик погрешности энергетического эквивалента	10	да	да	

 5.2. Если при проведении той или иной операции поверки получен отрицательный результат, дальнейшая поверка прекращается.

6 СРЕДСТВА ПОВЕРКИ

При проведении поверки должны быть применены средства, указанные в таблице 2.

Таблица 2 - Средства поверки и их метрологические характеристики

Į l				
Средства поверки и их основные технические и (или)				
метрологические характеристики				
Эталонная мера энергии сгорания - ГСО 5504-90 "Бензойная кислота К-3": удельная энергия сгорания: (26454±5) кДж/кг; молярная доля основного компонента – не менее 99,99 %				
Лабораторные (аналитические) весы с наибольшим пределом взвешивания (НПВ) 200 г; предел допускаемой погрешности взвешивания: 0,3 мг				
Стальные баллоны малого или среднего объема для газов на Р≤19,6 МПа по ГОСТ 949				
Приборы и оборудование в соответствии с технической документацией изготовителя на соответствующую модель калориметра				
Стеклянная лабораторная посуда (приложение А)				
Реактивы и материалы (приложение Б)				

- 6.2 Средства измерений, входящие в комплект калориметра, подлежат поверке в сроки, указанные в документации.
- 6.3 Допускается применение других средств поверки, не приведенных в таблице 2, но обеспечивающих определение метрологических характеристик калориметра с требуемой точностью.

7 УСЛОВИЯ ПОВЕРКИ И ПОДГОТОВКА К НЕЙ

- 7.1 Калориметр поверяют на его рабочем месте.
- 7.1.1 При проведении поверки соблюдают нормальные условия в соответствии с требованиями ГОСТ 8.395:

- температура окружающего воздуха, 0 С от 20 до 25;
- относительная влажность окружающего воздуха (60 ± 20) %;
- напряжение питания переменного тока, В
 220 (-15+10 %);
- частота, Гц
 (50 ± 1).

7.1.2 При проведении поверки отсутствуют:

внешние электрические и магнитные поля, влияющие на работоспособность калориметра; вибрация, тряска, удары; приборы и установки, интенсивно излучающие тепло и создающие потоки воздуха.

- 7.1.3 Калориметр защищают от прямого воздействия солнечных лучей.
- 7.2 Перед проведением поверки выполняют следующие подготовительные работы:

высушивают бензойную кислоту в эксикаторе над свежеприготовленным фосфорным ангидридом в течение 24 ч (возможна замена фосфорного ангидрида на осушители, близкие к нему по степени осушки: окись алюминия (Al_2O_3), окись бария (BaO), ангидрон ($Mg(ClO_4)_2$), окись кальция (CaO). В этом случае время осушки должно быть увеличено в соответствии с поглотительной способностью осушителя);

промывают пресс-форму способом, изложенным в пп.8.7-8.9;

приготавливают при помощи пресса для каждой бомбы не менее 6 брикетов бензойной кислоты каждый массой $(1,00\pm0,01)$ г и выдерживают в эксикаторе не менее трех суток до их использования;

подготавливают оборудование для работы с кислородом и монтируют (в случае необходимости) приспособление для наполнения бомбы кислородом;

подготавливают стеклянную посуду (см. приложение А);

подготавливают 0,1 моль/дм³ раствор гидроксида калия или гидроксида натрия и 1% - ный спиртовой раствор метилового красного индикатора;

монтируют приспособление для титрования, состоящее из склянки с нижним тубусом вместимостью 1000 см³ и микробюретки вместимостью 5 см³;

выполняют другие регламентные работы, предусмотренные в технической документации на калориметр.

8 ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 8.1 При проведении поверки соблюдают требования безопасности, установленные в руководстве по эксплуатации.
 - 8.2 Калориметр должен быть заземлен.
- 8.3 При поверке используют кислород, полученный методом глубокого охлаждения атмосферного воздуха. Запрещается использовать кислород, полученный электролизом воды.
- 8.4 При работе с кислородом под давлением соблюдают "Правила установки и безопасной эксплуатации сосудов, работающих под давлением" и требования ГОСТ 949.
- 8.5 Кислородный редуктор высокого давления с манометрами должен иметь паспорт предприятия-изготовителя с отметкой годности в свидетельстве о приемке.
- 8.6 Калориметрические бомбы должны иметь документ (аттестат, свидетельство или справку), подтверждающий испытания их гидравлическим давлением 10,8 МПа (например, в соответствии с ПА 400.00 463-2008). Испытания дополнительно проводят в случае износа или повреждения резьбы на корпусе и крышке бомбы.
- 8.7 Бомбы после испытания под давлением 10,8 МПа или после случайного загрязнения их, а также перед началом работы с новыми бомбами, даже при отсутствии в них явных следов масла и жира, протирают, разбирают и промывают бензином (или ацетоном), этиловым спиртом и дистиллированной водой, затем просушивают.
- 8.8 Пресс-форма в разобранном виде, ключи, а также детали, находящиеся в соприкосновении с кислородом, обрабатывают способом, указанным в п.8.7.

- 8.9 При промывании бомб и пресс-форм бензином и этиловым спиртом обеспечивают приточно-вытяжную вентиляцию и соблюдают требования безопасности.
- 8.10 Запрещается наклоняться над калориметром в момент зажигания образца.

9 ПРОВЕДЕНИЕ ПОВЕРКИ

9.1 Внешний осмотр

9.1.1. При внешнем осмотре устанавливают:

отсутствие внешних повреждений, влияющих на работоспособность калориметра;

комплектность и маркировку калориметра, отвечающую требованиям технической документации;

исправность органов управления, настройки и коррекции, отражающуюся на панели дисплея;

исправность системы заполнения калориметрических бомб кислородом.

9.1.2 Калориметры, забракованные при внешнем осмотре, дальнейшей поверке не подлежат.

9.2 Определение энергетического эквивалента

- 9.2.1 Для определения энергетического эквивалента в соответствии с руководством по эксплуатации калориметра проводят по шесть сжиганий бензойной кислоты марки К-3 в каждой калориметрической бомбе.
- 9.2.2 За значение энергетического эквивалента (\overline{C}) (в джоулях на кельвин) для каждой бомбы принимают среднее арифметическое значение шести измерений (N=6).

Определение энергетического эквивалента проводят не реже, чем один раз в три месяца, а также после ремонта или замены любой части системы.

Значение энергетического эквивалента (\overline{C}) используют в течение всего периода до следующей градуировки.

9.2.3 Для определения энергетического эквивалента выполняют следующие операции (для каждой конкретной модели калориметра смотри Руководство по эксплуатации):

взвешивают брикет бензойной кислоты на аналитических весах,

помещают тигель с брикетом бензойной кислоты в кольцо держателя бомбы. Конец запальной проволоки закрепляют на электроде и прижимают трубкой (возможен другой метод крепления). Второй конец проволоки продевают через отверстие брикета, закрепляют на другом электроде и также прижимают трубкой. Брикет должен провисать в тигель, при этом проволока не касается тигля (возможен поджиг вещества с помощью хлопчатобумажной нити, закрепленной на проволоке);

наливают 1 см³ дистиллированной воды в корпус бомбы;

устанавливают бомбу на подставку и присоединяют к приспособлению для наполнения бомбы кислородом. Подачу кислорода в бомбу регулируют игольчатым клапаном. Вначале бомбу продувают при давлении 0,49 МПа (5 ат) в течение 2 мин, затем за 1-2 мин медленно наполняют кислородом до давления 2,94 МПа (30 ат);

выполняют последующие операции градуировки калориметра, описанные в руководстве по эксплуатации на соответствующую модель калориметра.

9.2.4 По завершении измерений снимают крышку с калориметра и вынимают сосуд (для калориметров типа B-08MA «НМ»), затем вынимают бомбу из сосуда или из калориметра (для калориметров типа B-08MA «К», АБК-1, ТАНТАЛ ТА-5);

снимают колпачки с клапанов бомбы (при их наличии), открывают выходной клапан и выпускают газ, затем разбирают бомбу;

собирают остатки запальной проволоки и взвешивают их на аналитических весах.

При отсутствии вкраплений сажи внутри бомбы или несгоревшей бензойной кислоты смывают крышку, корпус и тигель тонкой струйкой дистиллированной воды в стакан, при этом используют минимальное количество

смывной воды, желательно не более 350 см³. Добавляют две капли метилового красного индикатора и титруют 0,1 н раствором гидроксида натрия (или калия). Измеряют объем раствора гидроксида, израсходованный на титрование, с целью определения поправки на образование азотной кислоты.

Бомбу и тигель промывают несколько раз дистиллированной водой. Протирают и просушивают бомбу при открытых клапанах. Если внутри бомбы имеются вкрапления сажи или несгоревшая бензойная кислота, результат считают недействительным.

10 ОПРЕДЕЛЕНИЕ ХАРАКТЕРИСТИК ПОГРЕШНОСТИ ЭНЕРГЕТИЧЕСКОГО ЭКВИВАЛЕНТА

- 10.1 Для автоматизированных калориметров с процессором или компьютером обработку результатов измерений проводят с использованием математического аппарата калориметра, который позволяет получить на дисплее прибора (или компьютера) значение энергетического эквивалента в каждом калориметрическом опыте.
- 10.2 Для неавтоматизированных изопериболических калориметров (т.е. калориметров с изотермической оболочкой) типа B-08MA «НМ» значение энергетического эквивалента, Дж/К, вычисляют по формуле

$$C_{i} = \frac{Q_{1} + Q_{2} + Q_{3}}{(t_{x} - t_{0} + \Delta h)z} = \frac{Q}{\Delta t},$$
(1)

где Q_1 - энергия, выделившаяся при сгорании бензойной кислоты, $Q_1 = q_1 * m_1$, Дж; $Q_2 = q_2 * m_2 -$ энергия, выделившаяся при сгорании запальной проволоки, Дж; $Q_3 = q_3 * V -$ энергия, выделившаяся при образовании и растворении в воде азотной кислоты, Дж;

 $Q = Q_1 + Q_2 + Q_3$ -общая энергия, выделившаяся в бомбе, Дж;

 t_n - показание термометра, соответствующее конечной температуре главного периода в делениях шкалы термометра;

 t_o - показание термометра, соответствующее начальной температуре главного периода в делениях шкалы термометра;

ан - поправка на теплообмен калориметрической системы с окружающей средой в делениях шкалы термометра;

z - средняя цена деления шкалы термометра.

 $\Delta t = (t_n - t_0 + \Delta h) \cdot z$ - подъем температуры калориметрической системы с учетом поправки на теплообмен, К;

В приведенных выше формулах использованы следующие обозначения величин:

 q_1 - удельная энергия сгорания бензойной кислоты К-3, Дж/г;

 m_1 - масса бензойной кислоты, г;

 q_2 - удельная энергия сгорания проволоки (или нити), Дж/г;

 m_2 - масса сгоревшей проволоки (или нити), равная разности масс проволоки до и после сжигания, г;

 q_3 -энергия образования 1 см³ 0,1 моль/дм³ (0,1 н) раствора азотной кислоты, равная 5,8 Дж/см³, рассчитанная из значения молярной энергии образования азотной кислоты q_4 , указанной в приложении В;

V - объем точно 0,1 моль/дм 3 (0,1 н) раствора гидроксида, израсходованного на титрование. см 3 .

Поправку на теплообмен калориметра с окружающей средой вычисляют по формуле

$$\Delta h = K(\frac{t_o + t_n}{2} + \sum_{i=1}^{i=n-1} t_i - n\theta_n) + nv_n,$$

где $K = \frac{v_n - v_0}{\theta_n - \theta_o}$ - константа охлаждения калориметра;

$$v_0 = \frac{\dot{t} - t_o}{n_o}$$
 и $v_n = \frac{t_n - \dot{t}}{n_o}$ - средние скорости изменения температуры

(температурный ход) в начальном и конечном периодах, соответственно, за полуминутный промежуток, °С/инт;

 $\theta_{o} = \frac{t^{'} + t_{o}}{2}$ и $\theta_{n} = \frac{t^{''} + t_{n}}{2}$ - средние температуры начального и конечного периодов, соответственно, °C;

 t_i - i-я температура калориметра при некотором промежуточном отсчете в главном периоде, °C;

 $\sum_{i=1}^{i=n-1} t_i$ - сумма промежуточных отсчетов значений температуры калориметра в главном периоде, °C;

t и t - начальная температура начального периода, и конечная температура конечного периода, соответственно, °C;

 n_{o}, n, n_{n} - число измерений в начальном, главном и конечном периодах, соответственно.

10.3 За значение энергетического эквивалента (в джоулях на кельвин) принимают среднее арифметическое значение энергетического эквивалента, полученное по формуле

$$\overline{C} = \frac{\sum_{i=1}^{6} C_i}{6} \quad . \tag{2}$$

10.4 Среднее квадратическое отклонение результата измерений ЭЭ оценивают по формуле

$$S = \sqrt{\frac{\sum_{i=1}^{N} (C_i - \overline{C})^2}{N(N-1)}} \quad . \tag{3}$$

10.5 Суммарное среднее квадратическое отклонение результата измеренийЭЭ с учетом погрешности эталонной меры оценивают по формуле

$$S_{\Sigma} = \sqrt{\frac{\Theta_c^2}{3} + S^2} \quad , \tag{4}$$

где
$$\Theta_c = \frac{\Delta_{M0}.\overline{C}}{100}$$
 [Дж/К] (при Θ_{M} =±5 кДж/кг Δ_{M0} =0,02 %);

10.6 Коэффициент К вычисляют по формуле

$$K = \frac{2.6 * S + \Theta_c}{S + \sqrt{\frac{\Theta_c^2}{3}}},$$
 (5)

где 2,6 — коэффициент Стьюдента при доверительной вероятности P=0,95 и числе измерений N=6.

10.7 Находят верхнюю и нижнюю границы доверительного интервала (при доверительной вероятности P=0,95) погрешности результата измерений энергетического эквивалента по формуле

$$\Delta = \pm KS_{\Sigma} \tag{6}$$

10.8 Вычисляют верхнюю и нижнюю границы доверительного интервала (при P=0,95) относительной погрешности результата измерений энергетического эквивалента по формуле

$$\Delta_o = \pm \frac{\Delta}{C} 100 \% \tag{7}$$

10.9 Результаты определения энергетического эквивалента считают удовлетворительными и полученное значение \overline{C} используют при определении энергии сгорания топлива, если границы доверительного интервала (без учета знака) относительной погрешности энергетического эквивалента Δ_o не превышают величины, нормированной в паспорте калориметра (для моделей калориметров В-08МА «НМ», В-08МА «К», АБК-1, «ТАНТАЛ» ТА-5 эта величина установлена равной 0,1 %). В противном случае выявляют и устраняют причины, влияющие на разброс показаний, и повторяют серию измерений. Если повторная серия не дает удовлетворительного результата, то калориметр признают негодным к применению.

11 ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

11.1 Если калориметр по результатам первичной поверки признан пригодным к применению, то в его паспорте делают отметку о первичной поверке и заверяют ее поверительным клеймом по ПР 50.2.007.

- 11.2 После установки калориметра на месте его эксплуатации проводят внеочередную поверку.
- 11.3 Калориметры не реже одного раза в год подвергают периодической поверке.
- 11.4 Результаты поверки заносят в протокол, форма которого приведена в приложении Г.
- 11.5 На калориметры, признанные годными при периодической поверке, выдают свидетельство о поверке в соответствии с ПР 50.2.006.
- 11.6 Если калориметр по результатам поверки признан негодным к применению, свидетельство о поверке аннулируют и выдают извещение о непригодности с указанием причин в соответствии с ПР 50.2.007.
- 11.7 Через квартал после периодической поверки и далее ежеквартально до следующей поверки (т.е. минимум три раза в год) метрологическая или выполняющая эти функции другая служба предприятия-потребителя проводит контрольные определения энергетического эквивалента. Полученные при этом значения энергетического эквивалента калориметра используют до следующих контрольных определений. При этом заполняют протокол, аналогичный указанному в приложении Г, который утверждает главный инженер предприятия.
- 11.8 Внеочередные контрольные определения энергетического эквивалента также проводят: при замене частей бомбы, калориметрического сосуда,

термометров и т.д.

ПРИЛОЖЕНИЕ А

(справочное)

Перечень стеклянной лабораторной посуды, применяемой при поверке

Наименование	Объем,	НД
	см3	
Колба	1000	ГОСТ 25336
Стакан	250	То же
Эксикатор диаметром 190 мм	-	11
Микробюретка типа 1	5	ГОСТ 29251
Мерный цилиндр	500	ГОСТ 25336
Пипетки	1 и 10	ΓΟCT 29227
Вставка для эксикатора диаметром 175 мм		ГОСТ 9147
Стаканчики	-	ГОСТ 25336

ПРИЛОЖЕНИЕ Б (справочное)

Перечень реактивов и материалов, применяемых при поверке

- 1. Кислород газообразный технический или медицинский по ГОСТ 5583.
- 2. Проволока запальная диаметром (0,1-0,2) мм:

никелевая по ГОСТ 2179;

константановая по ГОСТ 5307;

медная;

стальная;

хромоникелевая;

платиновая по ГОСТ 18389.

- Редуктор высокого давления для кислорода РК-70 по ГОСТ 15150 с манометрами по ГОСТ 2405.
- 4. Фосфорный ангидрид по ТУ 6-09-4173 или перхлорид магния безводный по ТУ 6-09-3880 или кальций хлористый по ТУ 6-09-4711.
- 5. Гидроксид (гидроокись) калия по ГОСТ 24363 или гидроксид (гидроокись) натрия по ГОСТ 4328.
- 6. Метиловый красный индикатор.
- 7. Вода дистиллированная по ГОСТ 6709.
- 8. Бумага фильтровальная по ГОСТ 12026.
- 9. Спирт этиловый ректифицированный технический по ГОСТ 18300.
- 10. Бензин для промышленно-технических целей или нефрас по ГОСТ 8505.
- 11. Пресс-форма для брикетирования (в случае необходимости).

ПРИЛОЖЕНИЕ В

(справочное)

Свойства веществ и материалов,

применяемых при поверке

1. Значение энергии сгорания эталонной меры - ГСО 5504-90 "Бензойная кислота К-3", взвешенной в воздухе, принято равным q_1 =26454 кДж/кг.

2. Энергия сгорания проволоки q₂:

никелевой – 3240 кДж/кг,

константановой – 3140 кДж/кг,

медной – 2510 кДж/кг,

стальной – 6690 кДж/кг,

хромоникелевой – 1402 кДж/кг,

платиновой – 420 кДж/кг.

3. Плотность бензойной кислоты ρ_S =1320 кг/м³.

4. Энергия сгорания хлопчатобумажной нити – в соответствии с информацией фирмы-изготовителя на принадлежности к калориметру.

5. Молярная энергия образования и растворения азотной кислоты:

 q_4 =57,8 кДж/моль.

Приложение Г (обязательное) Форма ПРОТОКОЛА ПОВЕРКИ

Калориметр модели	
Зав. N	
Дата выпуска	
Дата поверки	_
Условия поверки: температура окружающего воздуха _	oc;
атмосферное давление	кПа;
относительная влажность	% .
Режим работы калориметра (указать - изопериболический, а Результаты поверки 1. Результаты внешнего осмотра	диабатический,)
2. Результаты определения энергетического эквивалента	

	Результаты измерений энергетического эквивалента калориметра	Результаты измерений энергетического эквивалента калориметра
	с бомбой № 1,	с бомбой № 2,
	Дж/К	Дж/К
1		
2		
3		
4		
5		
6		
Среднее		
арифметическое		
значение \overline{C}		

3. Результаты определения характеристик погрешности энергетического эквивалента:

Наименование метрологических характеристик	Обозначение	бомба № 1	бомба № 2	
Среднее квадратическое отклонение результата измерений ЭЭ, Дж/К	$S = \sqrt{\frac{\sum_{i=1}^{6} (C_i - \overline{C})^2}{30}}$			
Доверительные границы (P=0,95) неисключенной систематической погрешности, Дж/К	$\Theta_c = \frac{\Delta_{M0}.\overline{C}}{100}$			
Суммарное среднее квадратическое отклонение результата измерений ЭЭ с учетом погрешности эталонной меры, Дж/К	$S_{\Sigma} = \sqrt{\frac{\Theta_{c}^{2}}{3} + S^{2}}$			
Коэффициент К	$K = \frac{2.6 * S + \Theta_c}{S + \sqrt{\frac{\Theta_c^2}{3}}}$			
Доверительные границы (Р=0,95) погрешности				
результата измерений энергетического $\Delta = KS_{\Sigma}$ эквивалента (без учета знака), Дж/К				
Доверительные границы (P=0,95) относительной погрешности результата измерений энергетического эквивалента (без учета знака), %	$\Delta_o = \frac{\Delta}{\overline{C}} 100$			
4. Заключение: калориметр пригоден к требованиям настоящей методики поверки: Δ_o	-	юскольку	отвечает	
Поверитель	_			

Дата

И.О.Фамилия

"___"____200 г.

Подпись

ПРИЛОЖЕНИЕ Д

(справочное)

Пример протокола обработки результатов измерений энергетического эквивалента

Калориметр В-08МА		
Зав. № 1535, бомба типа 2 № 25		
Предприятие-изготовитель: ТОО «Алматинский завод	"Эталон"	
Дата выпуска		
Дата поверки		
Условия поверки: температура окружающего воздуха	oc;	
атмосферное давление		_кПа;
OTHOCUTETINAS RESEMBLICAN		%

Таблица Д.1 - Регистрация температуры калориметра (в вольтах) с применением цифрового вольтметра

Номера измерений	Показания по шкале термометра в периоде		
	начальном	главном	конечном
1	t = 0,7819	1,4838	2,8719
2	0,7850	2,5092	2,8724
3	0,7881	2,7575	2,8728
4	0,7912	2,8182	2,8733
5	0,7943	2,8404	2,8737
6	0,7974	2,8517	2,8742
7	0,8005	2,8586	2,8748
8	0,8035	2,8626	2,8752
9	0,8067	2,8650	2,8758
10	0,8098	2,8664	2,8768
11	0,8129	2,8674	2,8773
12	0,8160	2,8679	2,8777
13	0,8191	2,8682	2,8783
14	0,8222	2,8684	2,8787
15	0,8253	2,8686	2,8793
16	0,8284	2,8699	2,8799
17	0,8315	2,8690	2,8804
18	0,8346	2,8692	2,8809
19	0,8376	2,8695	2,8816
20	0,8408	2,8697	t'' = 2,8820
21	$t_o = 0.8438$	2,8701	
22		2,8703	
23		2,8708	
24		2,8712	
25		$t_n = 2,8715$	

Расчет значения энергетического эквивалента

Исходные данные для расчетов

$$m_1 = 1,1420$$
 г; $q_1 = 26454$ Дж/г; $m_2 = 0,0105$ г; $q_2 = 3240$ Дж/г;

$$V = 0,46 \text{ см}^3$$
; $q_3 = 5,8 \text{ Дж/см}^3$; $z = 1,0114 \text{ °C/дел}$;

Температура оболочки: $(27,12\pm0,03)$ °C. Температура комнаты: 20,1 °C.

Расчет:
$$Q_1 = q_1 m_1 = 26454 \cdot 1,1420 = 30211,4$$
 Дж;

$$Q_2 = q_2 m_2 = 3240 \cdot 0.0105 = 34.0 \,\text{Дж};$$

$$Q_3 = q_3V = 5.8 \cdot 0.46 = 2.7$$
 Дж;

$$Q = 30211,4 + 34,0 + 2,7 = 30248,1$$
 Дж.

Рассчитывают поправку на теплообмен:

 n_0 =21точка, n=25 точек, n_n =20 точек.

$$v_0 = \frac{t' - t_0}{n_0 - 1} = \frac{0.7819 - 0.8438}{20} = -0.003095;$$

$$V_n = \frac{t_n - t''}{n_n} = \frac{2,8715 - 2,8820}{20} = -0,000525;$$

$$\theta_o = \frac{t' + t_0}{2} = \frac{0,7819 + 0,8438}{2} = 0,81285;$$

$$\theta_n = \frac{t'' + t_n}{2} = \frac{2,8715 + 2,8820}{2} = 2,87675;$$

$$K = \frac{v_n - v_0}{\theta_n - \theta_0} = \frac{-0,000525 - (-0,003095)}{2,87675 - 0,81285} = 0,001245;$$

$$\frac{t_o + t_n}{2} = \frac{0.8438 + 2.8715}{2} = 1.85765;$$

$$\sum_{1}^{n-1} t_i = 66,8826;$$

$$n\theta_n = 25 \cdot 2,87675 = 71,91875$$
;

$$nv_n = 25 \cdot (-0,000525) = -0,013125$$
;

$$\Delta h = K \left(\frac{t_0 - t_n}{2} + \sum_{i=1}^{n-1} t_i - n\theta_n \right) + nv_n =$$

$$= 0.00124 \cdot (1.85765 + 66.8826 - 71.91875) - 0.013125 = -0.0171;$$

$$t_n - t_0 = 2,8715 - 0,8438 = 2,0277$$
; z=1,0114;

$$\Delta t = (t_n - t_0 + \Delta h)z = (2,0277 - 0,0171) \cdot 1,0114 = 2,0335 \text{ K};$$

$$C_i = \frac{Q}{\Delta t} = \frac{30248,1}{2.0335} = 14875,0$$
 Дж/К.

ПРИЛОЖЕНИЕ Е

(справочное)

Пример расчета среднего значения энергетического эквивалента и погрешности

Таблица Е.1

Номер измерения	C_{i}	$C_i - \overline{C}$	$(C_i - \overline{C})^2$
1	14875,0	-10,48	109,90
2	14893,7	8,22	67,51
3	14883,8	-1,68	2,83
4	14884,3	-1,18	1,40
5	14887,4	1,92	3,67
6	14888,7	3,22	1,35
$egin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	14885,48	$\sum_{i}^{6} (C_{i} - \overline{C})^{2}$	195,67

Среднее квадратическое отклонение результата измерений ЭЭ	$S = \sqrt{\frac{\sum_{i=1}^{6} (C_i - \overline{C})^2}{30}}$	2,6	Дж/К	
Доверительные границы (P=0,95) неисключенной систематической погрешности	$\Theta_c = \frac{\Delta_{M0}.\overline{C}}{100}$	3,0	Дж/К	
Суммарное среднее квадратическое отклонение результата измерений ЭЭ с учетом погрешности эталонной меры	$S_{\Sigma} = \sqrt{\frac{\Theta_c^2}{3} + S^2}$	3,1	Дж/К	
Коэффициент К	$K = \frac{2.6 \cdot S + \Theta_c}{S + \sqrt{\frac{\Theta_c^2}{3}}}$	2,3		
Доверительные границы (Р=0,95)				
погрешности результата измерений	$\Delta = KS_{\Sigma}$	7	Дж/К	
энергетического эквивалента				

Доверительные границы (P=0,95) относительной погрешности результата $\Delta_o = \frac{\Delta}{C} 100 \hspace{1cm} \textbf{0,05} \hspace{1cm} \%$ измерений энергетического эквивалента

3. Заключение: результаты поверки калориметра показали, что доверительные границы (P=0,95) относительной погрешности результата измерений энергетического эквивалента Δ_o не превышают 0,1 %. Калориметр пригоден к применению.

Поверитель	подпись	И.О.Фамилия
		Пото " " 200 -

БИБЛИОГРАФИЯ

- [1] ПР 50.2.006-94 ГСИ. Порядок проведения поверки средств измерений
- [2] ПР 50.2.007-2001 ГСИ. Поверительные клейма
- [3] ТУ 6-09-3880 Перхлорид магния безводный
- [4] ТУ 6-09-4173-85 Ангидрид фосфорный
- [5] ТУ 6-09-4711 Кальций хлористый
- [6] ПА 400.00 463-2008 Бомбы калориметрические. Программа и методика первичной и периодической аттестации

Федеральное государственное унитарное предприятие ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ МЕТРОЛОГИИ им. Д.И.МЕНДЕЛЕЕВА (ФГУП «ВНИИМ им. Д.И.МЕНДЕЛЕЕВА)

Федерального агентства по техническому регулированию и метрологии

УТВЕРЖДАЮ
Директор ФГУП «ВНИИМ им. Д.И.Менделеева»
Н.И.Ханов
«»2009 г.
РЕКОМЕНДАЦИЯ
Государственная система обеспечения
единства измерений
КАЛОРИМЕТРЫ СЖИГАНИЯ С БОМБОЙ
(ЖИДКОСТНЫЕ)
Методика поверки
MИ 2096-2009
Руководитель лаборатории калориметрии ФГУП «ВНИИМ им. Д.И.Менделеева»
Е.Н.Корчагина
11 февраля 2009 г.

Санкт-Петербург 2009