Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Измерение концентраций вредных веществ в воздухе рабочей зоны

Сборник методических указаний МУК 4.1.1711—4.1.1733—03

Выпуск 45

ББК 51.21 И37

- ИЗ7 **Измерение** концентраций вредных веществ в воздухе рабочей зоны: Сборник методических указаний.—М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2008.—199 с.
 - 1. Подготовлены творческим коллективом специалистов Научноисследовательского института медицины труда РАМН в составе: Л. Г. Макеева руководитель, Г. В. Муравьева, Е. М. Малинина, Е. Н. Грицун, Г. Ф. Громова, при участии А. И. Кучеренко (Департамент Госсанэпиднадзора Минздрава России).
 - 2. Рекомендованы к утверждению на совместном заседании группы Главного эксперта Комиссии по государственному санитарно-эпидемиологическому нормированию по проблеме «Лабораторно-инструментальное дело и метрологическое обеспечение» и методбюро п/секции «Промышленно-санитарная химия» Проблемной комиссии «Научные основы медицины труда».
 - 3. Утверждены и введены в действие Главным государственным санитарным врачом Российской Федерации, Первым заместителем Министра здравоохранения Российской Федерации 29 июня 2003 г.
 - 4. Введены впервые.

ББК 51.21

[©] Роспотребнадзор, 2008

[©] Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2008

Содержание

Введение	5
Измерение массовых концентраций аммоний перрената з воздухе рабочей зоны методом атомно-абсорбционной спектрофотометрии: МУК 4.1.1711—03	5
Спектрофотометрическое измерение массовых концентраций 1-бензил-1-фенилгидразина гидрохлорида в воздухе рабочей зоны: МУК 4.1.1712—031	3
Спектрофотометрическое измерение массовых концентраций бензол-1,2-дикарбонового альдегида (ортофталевый альдегид) в воздухе рабочей зоны: МУК 4.1.1713—032	1
Спектрофотометрическое измерение массовых концентраций N, N' – бис (диацетил) этан – 1,2-диамина (тетраацетилэтилендиамина) в воздухе рабочей зоны: МУК 4.1.1714—032	9
Спектрофотометрическое измерение массовых концентраций бис (1метилэтил) нафталинсульфоновой кислоты натриевой соли (супражила WP) в воздухе рабочей зоны: МУК 4.1.1715—03	7
Спектрофотометрическое измерение массовых концентраций 1-гексадецил-пиридиний хлорида моногидрата (цетилпиридиний хлорид моногидрат) з воздухе рабочей зоны: МУК 4.1.1716—034	5
Фотометрическое измерение массовых концентраций тексафторида селена в воздухе рабочей зоны: МУК 4.1.1717—03	3
Газохроматографическое измерение массовых концентраций 1,1,1,2,3,3,3-гептафторпропана (хладона-227 _{еа}) з воздухе рабочей зоны: МУК 4.1.1718—036-	4
Спектрофотометрическое измерение массовых концентраций 4-гидроксиметил-4-метил-1-фенилпиразолидона (димезона S) з воздухе рабочей зоны: МУК 4.1.1719—0372	2
Спектрофотометрическое измерение массовых концентраций N,N-диметил-N-[3-[1-оксотетрадецил)амино]-пропил] 5ензолметанамминий хлорида гидрата (мирамистина) з воздухе рабочей зоны: МУК 4.1.1720—0380	0
Спектрофотометрическое измерение массовых концентраций N-(1,1-диметилэтил)-2-бензотиазолсульфенамида (сульфенамида Т) з воздухе рабочей зоны: МУК 4.1.1721—038	8
Спектрофотометрическое измерение массовых концентраций 2,5-диоксо-3-(2-пропенил)-1-имидозолидилметил (1 RS)- цис, гранс-2,2-диметил- 3-(2-метилпропенил) циклопропан карбоксилата имипротрина) в возлухе рабочей зоны: МУК 4,1,1722—03	7

МУК 4.1.1711—4.1.1733—03

Измерение массовых концентраций 2-имидазолидинона (этиленмочевина) в воздухе рабочей зоны методом высокоэффективной жидкостной хроматографии: МУК 4.1.1723—03	105
Спектрофотометрическое измерение массовых концентраций калия фто аддукта с гидропероксидом (1 : 1) (пероксогидрата-фторида калия) (ПФК) в воздухе рабочей зоны: МУК 4.1.1724—03	•
Спектрофотометрическое измерение массовых концентраций метилен-бис (полиметилнафтила сульфоната) натрия (супражил MNS/90) в воздухе рабочей зоны: МУК 4.1.1725—03	121
Газохроматографическое измерение массовых концентраций 3-метиленциклобутанкарбонитрила (циклобутанкарбонитрила) в воздухе рабочей зоны: МУК 4.1.1726—03	129
Измерение массовых концентраций S-метил-N-(метилкарбомоил)- окситиоацетимидата (метомила) в воздухе рабочей зоны методом высокоэффективной жидкостной хроматографии: МУК 4.1.1727—03	138
Спектрофотометрическое измерение массовых концентраций 2-(4-метокси-6-метил-1,3,5-триазин-2-ил-карбамоилсульфамоил) бензойной кислоты (метсульфурон-метила) в воздухе рабочей зоны: МУК 4.1.1728—03	146
Спектрофотометрическое измерение массовых концентраций 2-[4-метокси-6-метил-1,3,5-триазин-2-ил (метил) карбамоилсульфамоил] бензойной кислоты (трибенуронметила) в воздухе рабочей зоны: МУК 4.1.1729—03	154
Газохроматографическое измерение массовых концентраций 3-оксо-2-(трифторметил) додекафтороктановой кислоты (перфтор-2-метил-3-оксаоктановой кислоты) в воздухе рабочей зоны: МУК 4.1.1730—03	162
Измерение массовых концентраций 1-(4-хлорбензоил)— 5-метокси-2-метил-1Н-индол-3-этановой кислоты (индометацин) в воздухе рабочей зоны методом высокоэффективной жидкостной хроматографии (ВЭЖХ): МУК 4.1.1731—03	170
Спектрофотометрическое измерение массовых концентраций этандионовой кислоты дигидрата (щавелевой кислоты дигидрата) в воздухе рабочей зоны: МУК 4.1.1732—03	178
Газохроматографическое измерение массовых концентраций этил-трет-бутилового эфира (ЭТБЭ) в воздухе рабочей зоны: МУК 4.1.1733—03	187
Приложение 1. Приведение объема воздуха к стандартным условиямПриложение 2. Коэффициенты для приведения объема воздуха	197
к стандартным условиям	

Введение

Методические указания «Измерение концентраций вредных веществ в воздухе рабочей зоны» (выпуск 45) разработаны с целью обеспечения контроля соответствия фактических концентраций вредных веществ их предельно допустимым концентрациям (ПДК) и ориентировочным безопасным уровням воздействия (ОБУВ) и являются обязательными при осуществлении санитарного контроля.

Включенные в данный сборник 23 мстодики контроля вредных веществ в воздухе рабочей зоны разработаны и подготовлены в соответствии с требованиями ГОСТ 12.1.005—88 ССБТ «Воздух рабочей зоны. Общие санитарно-гигиенические требования», ГОСТ Р 8.563—96 «Государственная система обеспечения единства измерений. Методики выполнения измерений», МИ 2335—95 «Внутренний контроль качества результатов количественного химического анализа», МИ 2336—95 «Характеристики погрешности результатов количественного химического анализа. Алгоритмы оценивания».

Методики выполнены с использованием современных методов исследования, метрологически аттестованы и дают возможность контролировать концентрации химических веществ на уровне и ниже их ПДК и ОБУВ в воздухе рабочей зоны, установленных ГН 2.2.5.1313—03 «Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны», ГН 2.2.5.1314—03 «Ориентировочные безопасные уровни воздействия (ОБУВ) вредных веществ в воздухе рабочей зоны» и дополнениями к ним.

Методические указания по измерению массовых концентраций вредных веществ в воздухе рабочей зоны предназначены для центров госсанэпиднадзора, санитарных лабораторий промышленных предприятий при осуществлении контроля за содержанием вредных веществ в воздухе рабочей зоны, а также научно-исследовательских институтов и других заинтересованных министерств и ведомств.

УТВЕРЖДАЮ

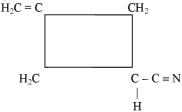
Главный государственный санитарный врач Российской Федерации, Первый заместитель Министра здравоохранения Российской Федерации Г. Г. Онищенко

29 июня 2003 г.

Дата введения: с момента утверждения

4.1. МЕТОДЫ КОНТРОЛЯ, ХИМИЧЕСКИЕ ФАКТОРЫ

Газохроматографическое измерение массовых концентраций 3-метиленциклобутанкарбонитрила (циклобутанкарбонитрила) в воздухе рабочей зоны


Методические указания МУК 4.1.1726—03

1. Область применения

Настоящие методические указания устанавливают количественный хроматографический анализ воздуха рабочей зоны на содержание 3-метиленциклобутанкарбонитрила в диапазоне массовых концентраций от 0.4 до 9.0 мг/ m^3 .

2. Характеристика вещества

2.1. Структурная формула.

- 2.2. Эмпирическая формула C_6H_7N .
- 2.3. Молекулярная масса 93,14.
- 2.4. Регистрационный номер CAS 15760-35-7.

- 2.5. Физико-химические свойства.
- 3-Метиленциклобутанкарбонитрил бесцветная жидкость со специфическим запахом, $T_{\text{кип}}$ 150—160 °C (при 760 мм рт. ст.), плотность 0,912 г/см³ при 23 °C, растворим в органических растворителях, нерастворим в воде.

Агрегатное состояние в воздухе – пары.

- 2.6. Токсикологическая характеристика.
- 3-Метиленциклобутанкарбонитрил обладает выраженным раздражающим действием. Класс опасности третий.

Предельно допустимая концентрация (ПДК) в воздухе рабочей зоны – 2 мг/м^3 .

3. Погрешность измерений

Методика обеспечивает выполнение измерений с относительной погрешностью \pm 10 %, при доверительной вероятности 0,95.

4. Метод измерений

Измерение массовой концентрации 3-метиленциклобутанкарбонитрила выполняют газохроматографическим методом с использованием пламенно-ионизационного детектора.

Отбор проб проводится без концентрирования.

Нижний предел измерения содержания 3-метиленциклобутанкарбонитрила в хроматографируемом объеме пробы -0,002 мкг.

Нижний предел измерения концентраций 3-метиленциклобутанкарбонитрила в воздухе $0,4~{\rm Mr/m}^3$ (при отборе $5~{\rm cm}^3$ воздуха).

Определению не мешают аллен и акрилонитрил.

5. Средства измерений, вспомогательные устройства, материалы, реактивы

При выполнении измерений применяют следующие средства измерений, вспомогательные устройства, материалы, реактивы.

5.1. Средства измерений, вспомогательные устройства, материалы

Хроматограф газовый с

пламенно-ионизационным детектором,

модель 3 700

Хроматографическая колонка

стальная 2 м х 2 мм

Аспирационное устройство,	
модель 822	ГОСТ 2.6.01—86
Весы аналитические ВЛР-200	ГОСТ 24104—88Е
Шприцы медицинские стеклянные,	
вместимостью 1, 5, 10, 100 см ³	ТУ 64-1-868—80
Пипетки стеклянные газовые,	
вместимостью 100, 200, 1 000 см ³	ГОСТ 18954—78
Газообразный азот	ГОСТ 9293—74
водород	ГОСТ 3022—80
воздух в баллонах с редукторами	ГОСТ 11882—73
Стекловолокно из стеклоткани	ГОСТ 10146—74
Микрошприц МШ-10	ТУ 6-2000 5E2.833106

5.2. Реактивы

3-Метиленциклобутанкарбонитрил, содержание основного вещества не менее 98 %. Технико-экономическое обоснование процесса получения октана (дициклобутила) № 151/2000, утв. 28.08.00. Насадка для хроматографической колонки Инертон Супер N зернением 0,12—0,16 мм с 5 % неподвижной фазы OV - 17.

Допускается применение иных средств измерений, вспомогательных устройств, реактивов и материалов, обеспечивающих показатели точности, установленные для данной МВИ.

6. Требования безопасности

- 6.1. При работе с реактивами соблюдают требования безопасности, установленные для работы с токсичными, едкими и легковоспламеняющимися веществами по ГОСТ 12.1.005—88.
- 6.2. При проведении анализов горючих и вредных веществ должны соблюдаться меры противопожарной безопасности по ГОСТ 12.1.004—76.
- 6.3. При выполнении измерений с использованием газового хроматографа соблюдают правила электробезопасности в соответствии с ГОСТ 12.1.019—79 и инструкцией по эксплуатации прибора.
- 6.4. При работе с газами, находящимися в баллонах под давлением до 15 MPa (150 Kgf/cm²), необходимо соблюдать «Правила устройства и безопасной эксплуатации стационарных компрессорных установок, воздуховодов и газопроводов при давлении до 15 MPa (150 Kgf/cm²)», а

также «Правила устройства и безопасной эксплуатации сосудов, работающих под давлением» (ПБ-10-115—96), утвержденные постановлением Гостехнадзора России 18.04.95, № 20, ГОСТ 12.2.085. Запрещается открывать вентиль баллона, не установив на нем понижающий редуктор.

7. Требования к квалификации оператора

К выполнению измерений и обработке результатов допускаются лица с высшим или средним специальным образованием, имеющие навыки работы на газовом хроматографе.

8. Условия измерений

- 8.1. Приготовление паровоздушных смесей 3-метиленциклобутанкарбонитрила и подготовку проб к анализу проводят в нормальных условиях при температуре воздуха (20 ± 5) °C, атмосферном давлении 84,0—106,0 кПа и относительной влажности воздуха не более 80 %.
- 8.2. Измерения на газовом хроматографе проводят в условиях, рекомендованных технической документацией к прибору.

9. Подготовка к выполнению измерений

Перед выполнением измерений проводят следующие работы: приготовление паровоздушных смесей, подготовку хроматографа, установление градуировочной характеристики, отбор проб.

9.1. Приготовление градуировочных смесей

9.1.1. Приготовление паровоздушной смеси № 1. В вакуумированную газовую пипетку вместимостью $1\,000\,\mathrm{cm}^3$ вводят микрошприцем $1\,\mathrm{mm}^3$ 3-метиленциклобутанкарбонитрила и заполняют воздухом до атмосферного давления. Концентрацию анализируемого вещества (мг/м³) вычисляют по формуле:

$$C = \frac{\rho \cdot V_1}{V_n}$$

 ρ – плотность определяемого компонента, мг/мм³;

 V_I – объем определяемого компонента, взятого для приготовления смеси № 1, мм³;

 V_n – объем пипетки, дм³.

9.1.2. *Приготовление паровоздушной смеси* N_2 2. В вакуумированную газовую пипетку вместимостью 200 см³ вводят 10 см³ паровоздушной смесимостью 200 см³ водят 10 см³ паровоздушной смесимостью 200 смесимост

ной смеси № 1 и уравнивают давление до атмосферного. Массовая концентрация 3-метиленциклобутан-карбонитрила в газовой пипетке составляет 0.045 мкг/см^3 . Срок хранения паровоздушной смеси — сутки.

9.1.3. В вакуумированные газовые пипетки вместимостью 100 см^3 медицинским шприцем вводят 1,0; 2,5; 5; 10; 15; 20 см³ паровоздушной смеси № 2, заполняют пипетки воздухом до атмосферного давления и встряхивают. Срок хранения паровоздушных смесей – сутки.

9.2. Подготовка прибора

Подготовку прибора осуществляют согласно инструкции по эксплуатации.

Хроматографическую стальную колонку механически заполняют готовой насадкой Инертон Супер N с 5 % OV-17 с применением вакуума.

Колонку устанавливают в термостат и, не подсоединяя к детектору, кондиционируют в токе газа-носителя (азота) в течение 24 ч, повышая температуру от 60 до 150 °C, со скоростью 1 °C/мин.

После этого колонку присоединяют к детектору и продолжают кондиционировать до стабилизации нулевой линии при максимальной чувствительности прибора.

9.3. Установление градуировочной характеристики

Градуировочную характеристику, выражающую зависимость величины хроматографического сигнала (площади пика, мм²) от массы анализируемого вещества (мкг) в хроматографируемом объеме пробы, устанавливают по методу абсолютной градуировки с использованием серии градуировочных смесей с концентрациями 3-метиленциклобутанкарбонитрила, получаемыми соответствующим разбавлением стандартной смеси воздухом в шприцах вместимостью 100 см³. Анализ 3-метиленциклобутанкарбонитрила проводят методом абсолютной градуировки. Для этого вводят в хроматограф по 5 см³ каждой градуировочной паровоздушной смеси, начиная с минимальной концентрации. Градуировочный график строят в координатах: количество введенного 3-метиленциклобутанкарбонитрила (мкг) — площадь пика (мм²). Градуировку выполняют не менее чем по 6 точкам, проводя 5 параллельных измерений для каждой концентрации согласно табл. 1.

Таблица 1 Паровоздушные смеси для установления градуировочной характеристики при определении 3-метиленциклобутанкарбонитрила

Номер стандарта смеси	Объем паровоздупной смеси № 2, см ³	Объем воздуха, см ³	Содержание вещества в хроматографируемом объеме, мкг
1	0	100	0
2	1,0	99,0	0,002
3	2,5	97,5	0,005
4	5,0	95,0	0,011
5	10,0	90,0	0,022
6	15,0	85,0	0,033
7	20,0	80,0	0,045

Условия хроматографирования градуировочных смесей и анализируемых проб:

температура термостата коло	нки	110 °C;
температура испарителя		150 °C;
температура детектора		150 °C;
скорость потока газа-носител	я азота	30 см ³ /мин;
	водорода	30 см ³ /мин;
	воздуха	300 см ³ /мин;
скорость движения диаграмм	ной ленты	0,3 см/мин;
время удерживания 3-метиле	нциклобутан-	
карбонитрила	-	55 c;
объем вводимой пробы		5 см ³ .

Проверку градуировочного графика проводят при изменении условий анализа, после ремонта, замены колонки, но не реже 1 раза в месяц.

9.4. Отбор пробы воздуха

Пробы воздуха отбирают в стеклянные медицинские шприцы вместимостью 100 см³, предварительно прокачав их анализируемым воздухом (7—10 раз). Шприцы закрывают заглушками. Пробы анализируют в день отбора. Пробы сохраняются не более 8 ч.

10. Выполнение измерения

Для анализа отбирают 5 см³ пробы из шприца. Хроматографический анализ выполняют в тех же условиях, что и градуировку. Количественное содержание анализируемого вещества в хроматографируемом объеме (мкг) определяют по предварительно построенному градуировочному графику.

11. Вычисление результатов измерения

Массовую концентрацию 3-метиленциклобутанкарбонитрила $(C, \text{мг/м}^3)$ в воздухе вычисляют по формуле:

$$C = \frac{a \cdot 10^3}{V}$$
, где

a — содержание анализируемого вещества в хроматографируемом объеме пробы, найденное по градуировочному графику, мкг;

V — объем анализируемой пробы, приведенный к стандартным условиям, см³ (см. прилож. 1);

 10^{3} – коэффициент пересчета на мг/м³.

12. Оформление результатов анализа

Результат количественного анализа представляют в виде:

$$C \pm \Delta$$
, мг/м³, $P = 0.95$, где

 Δ – граница абсолютной погрешности;

 $\Delta = \delta \cdot 0.01$:

 δ – граница относительной погрешности.

13. Контроль погрешности методики

Таблица 2

Нормативы оперативного контроля показателей качества результатов КХА

Диапазон определя-	Границы от-	1 1				
емых концентраций 3-метилен- циклобутанкарбо- нитрила, мг/м ³	носительной погрешности δ , % $(P = 0.95)$	d, % $(n = 3, P = 0.95)$	воспроизводимости D , % $(m = 2, P = 0.95)$	погрешно- сти <i>K</i> , % (<i>P</i> = 0,90)		
0,49,0	± 10	10	9	8,4		

13.1. Оперативный контроль воспроизводимости

Образцами для контроля являются стандартные паровоздушные смеси по п. 9.1 настоящих методических указаний.

Пробу анализируют в точном соответствии с прописью методики, максимально варьируя условия проведения анализа, т. е. получают два результата анализа в различных лабораториях или одной лаборатории, но сделанные двумя лаборантами или одним, но в разное время.

Два результата не должны отличаться друг от друга на величину допустимых расхождений между результатами анализа, полученных в указанных условиях, D (норматива оперативного контроля).

$$(C_1 - C_2) \le D$$
, rae
$$C_1 = \frac{(C_{11} + C_{12})}{2};$$

$$C_2 = \frac{(C_{21} + C_{22})}{2};$$

 $C_{11},\,C_{12},\,C_{21},\,C_{22}$ — параллельные определения, получаемые первым и вторым лаборантами соответственно (или одним лаборантом, но в различное время);

D — норматив оперативного контроля воспроизводимости (допустимые расхождения между результатами анализа C_1 и C_2 одной и той же пробы).

Значения D приведены в табл. 2.

При превышении норматива оперативного контроля воспроизводимости эксперимент повторяют. При повторном превышении указанного норматива D выясняют причины, приводящие к неудовлетворительным результатам контроля, и устраняют их.

13.2. Оперативный контроль сходимости

Образцами для контроля являются стандартные паровоздушные смеси. Пробу анализируют в точном соответствии с прописью данной методики, получая 2 результата параллельных определений, которые не должны отличаться друг от друга на величину допустимых расхождений между результатами параллельных определений d (норматив оперативного контроля сходимости).

$$(C_1 - C_2) \le \mathbf{d}$$
, где

 C_1 и C_2 – результаты паралельных измерений массовой концентрации вещества в анализируемой пробе, мг/м³.

d – норматив оперативного контроля сходимости.

Значения d приведены в табл. 2.

При превышении норматива оперативного контроля сходимости эксперимент повторяют. При повторном превышении указанного норматива d выясняют причины, приводящие к неудовлетворительным результатам контроля, и устраняют их.

13.3. Оперативный контроль погрешности

Оперативный контроль погрешности выполняют в одной серии с анализом рабочих проб.

Оперативный контроль погрешности результатов измерений выполняют с использованием в качестве образцов для контроля стандартных смесей по п. 9.1 настоящих методических указаний.

Образец для контроля анализируют в соответствии с настоящими методическими указаниями.

Результаты контрольной процедуры признают удовлетворительными, если выполняется условие:

$$\frac{(C-C_o)}{C} \le K$$
, где

 $C_{\rm o}$ — массовая концентрация 3-метиленциклобутанкарбонитрила в образце для контроля, мг/м 3 :

C – результаты измерения массовой концентрации, мг/м 3 ;

K – норматив оперативного контроля погрешности (табл. 2), %.

При превышении норматива контроля эксперимент повторяют. При повторном получении отрицательного результата выясняют причины, приводящие к неудовлетворительным результатам контроля, и устраняют их.

14. Нормы затрат времени на анализ

Для проведения серии анализов из 6 проб требуется 1 ч.

Методические указания разработаны ГУ НИИ медицины труда РАМН (Е. М. Малинина).

Приложение 1

Приведение объема воздуха к стандартным условиям

Приведение объема воздуха к стандартным условиям (температура $20~^{\circ}$ С и давление 101,33~кПа) проводят по формуле:

$$V_{20} = \frac{V_t \cdot (273 + 20) \cdot P}{(273 + t) \cdot 10133}$$
, где

 V_t – объем воздуха, отобранного для анализа, дм³;

P – барометрическое давление, кПа (101,33 кПа = 760 мм рт. ст.);

t – температура воздуха в месте отбора пробы, °C.

Для удобства расчета V_{20} следует пользоваться таблицей коэффициентов (прилож. 2). Для приведения воздуха к стандартным условиям надо умножить V_t на соответствующий коэффициент.

Приложение 2 Коэффициенты для приведения объема воздуха к стандартным условиям

Давление Р, кПа/мм рт. ст.										
t° C	97,33/730	97,86/734	98,4/738	98,93/742	99,46/746	100/750	100,53/754	101,06/758	101,33/760	101,86/764
-30	1,1582	1,1646	1,1709	1,1772	1,1836	1,1899	1,1963	1,2026	1,2058	1,2122
-26	1,1393	1,1456	1,1519	1,1581	1,1644	1,1705	1,1768	1,1831	1,1862	1,1925
-22	1,1212	1,1274	1,1336	1,1396	1,1458	1,1519	1,1581	1,1643	1,1673	1,1735
-18	1,1036	1,1097	1,1158	1,1218	1,1278	1,1338	1,1399	1,1460	1,1490	1,1551
-14	1,0866	1,0926	1,0986	1,1045	1,1105	1,1164	1,1224	1,1284	1,1313	1,1373
-10	1,0701	1,0760	1,0819	1,0877	1,0986	1,0994	1,1053	1,1112	1,1141	1,1200
-6	1,0540	1,0599	1,0657	1,0714	1,0772	1,0829	1,0887	1,0945	1,0974	1,1032
-2	1,0385	1,0442	1,0499	1,0556	1,0613	1,0669	1,0726	1,0784	1,0812	1,0869
0	1,0309	1,0366	1,0423	1,0477	1,0535	1,0591	1,0648	1,0705	1,0733	1,0789
+ 2	1,0234	1,0291	1,0347	1,0402	1,0459	1,0514	1,0571	1,0627	1,0655	1,0712
+6	1,0087	1,0143	1,0198	1,0253	1,0309	1,0363	1,0419	1,0475	1,0502	1,0557
+10	0,9944	0,9999	0,0054	1,0108	1,0162	1,0216	1,0272	1,0326	1,0353	1,0407
+14	0,9806	0,9860	0,9914	0,9967	1,0027	1,0074	1,0128	1,0183	1,0209	1,0263
+18	0,9671	0,9725	0,9778	0,9830	0,9884	0,9936	0,9989	1,0043	1,0069	1,0122
+20	0,9605	0,9658	0,9711	0,9783	0,9816	0,9868	0,9921	0,9974	1,0000	1,0053
+22	0,9539	0,9592	0,9645	0,9696	0,9749	0,9800	0,9853	0,9906	0,9932	0,9985
+24	0,9475	0,9527	0,9579	0,9631	0,9683	0,9735	0,9787	0,9839	0,9865	0,9917
+26	0,9412	0,9464	0,9516	0,9566	0,9618	0,9669	0,9721	0,9773	0,9799	0,9851
+28	0,9349	0,9401	0,9453	0,9503	0,9555	0,9605	0,9657	0,9708	0,9734	0,9785
+30	0,9288	0,9339	0,9391	0,9440	0,9432	0,9542	0,9594	0,9645	0,9670	0,9723
+34	0,9167	0,9218	0,9268	0,9318	0,9368	0,9418	0,9468	0,9519	0,9544	0,9595
+38	0,9049	0,9099	0,9149	0,9199	0,9248	0,9297	0,9347	0,9397	0,9421	0,9471

Приложение 3

Указатель основных синонимов, технических, торговых и фирменных названий веществ

	стр.
1. Димезон S	74
2. Индометацин	170
3. Имипротрин	97
4. Метомил	138
5. Метсульфурон-метил	146
6. Мирамистин	80
7. Ортофталевый альдегид	21
8. Пероксигидрат фторида калия	113
9. Перфтор-2-метил-3-окса-октановая кислота	162
10. Сульфенамид T	88
11. Супражил ^{MNS} / ₉₀	121
2. Супражил WP	37
3. Тетраацетилэтилендиамин	29
4. Трибенуронметил	154
15. Хладон 227-еа	64
6. Цетилпиридиний хлорид моногидрат	45
7. Циклобутанкарбонитрил	129
8. Шавелевая кислота дигидрат	178
19. Этиленмочевина	105