Государственное санитарно-эпидемиологическое нормирование Российской Федерации

Государственные санитарно-эпидемиологические правила и гигиенические нормативы

2.2.6, БИОЛОГИЧЕСКИЕ ФАКТОРЫ ПРОИЗВОДСТВЕННОЙ СРЕДЫ

Предельно допустимые концентрации (ПДК) микроорганизмов-продуцентов, бактериальных препаратов и их компонентов в воздухе рабочей зоны

Гигиенические нормативы ГН 2.1.6.1762—03

4.2. МЕТОДЫ КОНТРОЛЯ. МИКРОБИОЛОГИЧЕСКИЕ ФАКТОРЫ

Методические указания

MYK 4.2.1776—03

МУК 4.2.1777—03

МУК 4.2.1778-03

МУК 4.2.1779-03

МУК 4.2.1780-03

МУК 4.2.1781—03

МУК 4.2.1782—03

МУК 4.2.1783-03

MYK 4.2.1784-03

Издание официальное

Минздрав России Москва 2004

4.2. МЕТОДЫ КОН ГРОЛЯ. МИКРОБИОЛОГИЧЕСКИЕ ФАКТОРЫ

Методические указания

МУК 4.2.1776-03 МУК 4.2.1777-03

МУК 4.2.1778-03

МУК 4.2.1779-03

МУК 4.2.1780-03

МУК 4.2.1781-03

МУК 4.2.1782-03

МУК 4.2.1783-03 МУК 4.2.1784-03

УТВЕРЖЛАЮ

Главный государственный санитарный врач Российской Федерации, Первый заместитель Министра здравоохранения Российской Федерации Г. Г. Онищенко

24 октября 2003 г. Дата введения: 1 декабря 2003 г.

4.2. МЕТОЛЫ КОНТРОЛЯ. МИКРОБИОЛОГИЧЕСКИЕ ФАКТОРЫ

Метод микробиологического измерения концентрации клеток микроорганизма Candida tropicalis Y-456— продуцента ксилита в воздухе рабочей зоны

Методические указания МУК 4.2.1782—03

1. Общие положения и область применения

Настоящие методические указания устанавливают методику проведения микробиологического количественного анализа концентрации клеток штамма Candida tropicalis Y-456 – продуцента ксилита в воздухе рабочей зоны в диапазоне концентраций от 10 до 3 000 клеток в 1 м³ воздуха.

Методические указания разработаны в соответствии с требованиями ГОСТ 12.1.005—88 «ССБТ. Воздух рабочей зоны. Общие санитарногигиенические требования» и ГОСТ Р 8.563—96 «Методики выполнения измерений».

Методические указания предназначены для применения в лабораториях предприятий, организаций и учреждений, аккредитованных в установленном порядке на право проведения микробиологических исследований.

Методические указания одобрены и рекомендованы секцией «Гигиенические аспекты биотехнологии и микробного загрязнения окружающей среды» Проблемной комиссии «Научные основы гигиены окружающей среды»

2. Биологическая характеристика Candida tropicalis Y-456 и его гигиенический норматив

На сусло-агаре на 2—3 сутки штамм образует круглые кремоватые колонии с ровным краем, средний диаметр изолированных колоний со-

ставляет 0,3 см, а максимальный – 0,8 см. В центре колоний образуется небольное возвышение — «бугорок», на среде появляется маленькое желто-оранжевое окрашивание. Консистенция колоний мягкая, неплотная, вязкая. Поверхность гладкая, слегка матовая.

Морфологически штамм представлен полиморфиыми клетками: округлые, овальные, большей частью одиночные 2-4 мкм, иногда цепочки или конгломераты из вытянутых клеток 10-12 мкм. Наблюдается обилие бластоснор.

При выращивании на кукурузном агаре по Дальмау в чашках Петри обильно образуются с многократными разветвлениями и бластоконилиями, расположенными олиночно или цепочками вдоль гиф (7).

Систематическое положение микроогнанизма.

Класс Fungi imperfecti Порядок Blastomycetales

Род Candida Вид tropicalis Штамм Y-456

Питамм получен из ЦМПМ ВНИИгенетика как продуцент этанола и селектирован по признаку формирования крупных колоний на средах с ксилозой. Штамм является продуцентом ксилита. Продуктивность на средах с 5 % содержанием ксилозы: максимальная — 80 % ксилита, средняя — 78,8—76,2 % (39,5 г/л) ксилита.

Штамм-продуцент растет на жидких и агаризованных средах. Оптимальная температура роста 35—37 °C, pH среды -5,0—6,0. Для размножения используется сусло-агар 5—6 °Б, среда ДАП — глюкоза (ксилоза) -20 г, дрожжевой экстракт -2,0 г, пептон -2 г, агар-агар -20 г, вода -1 л, pH среды -5,0—6,0.

Предельно допустимая концентрация (ПДК) в воздухе рабочей зоны – 300 кл./м^3 , пометка A.

3. Пределы измерений

Методика обеспечивает выполнение измерений количества клеток плесневого гриба в воздухе рабочей зоны в диапазоне концентраций от 10 до 3 000 клеток в 1 м³ воздуха при доверительной вероятности 0,95.

4. Метод измерений

Метод основан на аспирации из воздуха клеток плесневого гриба на поверхность среды сусло-агар и подсчета выросших колоний по типичным культурально-морфологическим признакам на 2 сутки. В качестве дополнительного контроля предлагается отбор пробы на чашку Петри с селективной средой для дифференцирования С. tropicalis от

других дрожжеподобных грибов, обладающих способностью к образованию ростковых трубок (8,9).

5. Средства измерений, вспомогательные устройства, реактивы и материалы

При выполнении измерений применяют следующие средства измерений, вспомогательные устройства и материалы.

5.1. Средства измерений, вспомогательные устройства, материалы

Прибор для бактериологического анализа	TV 64 10701 77
воздуха, модель 818 (щелевой прибор Кротова)	1 y 04-12/91//
Термостаты электрические суховоздушные	
или водяные	
Автоклав электрический	ГОСТ 9586—75
Бокс, оборудованный бактерицидными лампами	
Холодильник бытовой	
Весы лабораторные, аналитические типа	
BJIA-200	
Микроскоп биологический с иммерсионной	
системой типа «Биолам» Л-211	
Лупа с увеличением × 10	FOCT 25706—83
Чашки Петри бактериологические	
плоскодонные, стеклянные, диаметром 100 мм	
Пробирки биологические, вместимостью	
20 и 35 мл	FOCT 10515—75
Пипетки мерные на 1, 5 и 10 мл	ΓOCT 10515—75
Пипетки мерные на 1, 5, и 10 мл	ΓΟCT 177074
Колбы конические, вместимостью 250 и 500 мл	ΓΟCT 177074
Секундомер	ГОСТ 9586—75
Барометр	FOCT 246 96—79
Марля медицинская	ΓΟCT 941277
Вата медицинская гигроскопическая	ГОСТ 2555681
-	

5.2. Реактивы, растворы

Среда сусло-агар: солодовое сусло (значение Баллинга от 5 до 6°) – 98 %, агар-агар – 2 %, рН среды 5,0—6,0, режим стерилизации 1,1—1,2 ати, 40 мин Спирт этиловый ректификат ГОСТ 5962—67 Антибиотик биомицин (хлортетрациклина гидрохлорид)

Сыворотка или плазма крови человека (вместо них можно использовать среду 199)

6. Требования безопасности

При выполнении измерений концентрации клеток штамма-продуцента в воздухе рабочей зоны соблюдают следующие требования.

- 6.1. Правила техники безопасности при работе с химическими реактивами по ГОСТ 12.1.005—88.
- 6.2. Электробезопасность при работе с электроустановками по ГОСТ 12.1.019—79 и инструкции по эксплуатации прибора.
- 6 3. Руководство «Положение об организации работы по технике безопасности в микробиологической промышленности» (1980), «Инструкции по устройству, требованиям безопасности и личной гигиены при работе в микробиологических лабораториях предприятий микробиологической промышленности» (1977).
- 6.4 Все виды работ с реактивами проводят только в вытяжном шкафу при работающей вентиляции, работа с биологическим материалом осуществляется в боксе, оборудованном бактерицидными лампами.

7. Требования к квалификации операторов

К выполнению измерений и обработке их результатов допускают лиц с высшим или средним специальным образованием, процедших соогветствующую подготовку и имеющих навыки работы в области микробиологических исследований.

8. Условия измерений

Процессы приготовления растворов и полнотовки проб к анализу проводят в нормальных условиях при температуре воздуха (20 ± 5 °C), атмосферном давлении 630- 800 мм рт. ст и влажности воздуха не более 80 %.

9. Проведение измерения

9.1. Условия отбора проб воздуха

Для определения концентрации клеток плесневого гриба воздух аспирируют при помощи аппарата Кротова со скоростью 10 п/мин на поверхность среды сусло-агар. Время аспирации возлуха (1 -10 мин) зависит от предполагаемой концентрации клеток штамма-пролуцента.

Аппарат Кротова перед каждым отбором пробы воздуха тщательно протирают спиртом. Особенно тщательно обрабатывают поверхность подвижного диска и внутреннюю стенку прибора; наружную и внутреннюю стенку крышки. На подвижной диск устанавливают подготовленного стенку крышки.

ную чашку Петри со средой, одновременно снимая с нее крышку. Прибор закрывают. Соприкосновение крышки прибора со средой недопустимо. После отбора пробы воздуха и остановки диска, прибор открывают, быстро снимают чашку Петри и закрывают крышкой от данной чашки. На дне чашки Петри стеклографом отмечают точку контроля, время аспирации и дату отбора пробы.

9.2. Выполнение анализа

Метод предполагает учет количества типичных колоний, выросших на 2 сутки после посева проб воздуха по культурально-морфологическим признакам. Метод позволяет учитывать на чашке до 200 колоний продуцента.

Агаризованную среду сусло-агар расплавляют, остужают до 50—60 °C, добавляют антибиотик биомицин из расчега 100 мг/л (для подавления посторонней бактериальной микрофлоры), тщательно перемешивают и разливают по 10 мл в стеклянные чашки Петри на горизонтальной поверхности.

Чашки с застывшей средой помещают в термостат на сутки при температуре 37 °C, после чего проросшие чашки бракуют, стерильные чашки используют для контроля воздуха.

После отбора проб воздуха чашки Петри помещают в термостат при температуре 37 °C. Через 2 суток производят подсчет выросших типичных колоний продуцента. При необходимости культуру подвергают микроскопированию.

Для постановки дополнительного контроля в среду добавляют сыворотку или плазму крови человека (можно также заменить средой 199) из расчета 0,5 мл сыворотки на 5 мл среды. После отбора проб инкубируют при 37 °С в течение 3 часов. При микроскопировании некоторые дрожжеподобные грибы (С. albicans) в отличие от С. tropicalis на селекгивной среде образуют ростковые трубки диаметром 3—4 мкм и длиной до 20 мкм (они сходны с мицелием, но не дают сужения в месте прикрепления к дрожжевой клетке).

10. Вычисление результатов измерения

Расчет концентрации клеток продуцента в пересчете на 1 м³ воздуха производят по формуле:

$$X = \frac{N \cdot 1000}{\nu}$$
, кл./м³, где

Х - концентрация клеток продуцента в воздухе;

N - количество колоний продуцента, выросших на чашке;

MYK 4.2.1782--03

1 000 - коэффициент пересчета на 1 м3 воздуха;

V - объем воздуха, л (произведение скорости на время аспирации).

11. Оформление результатов измерений

Результаты измерений оформляют протоколом по форме.

Протокол №

количественного микробиологического анализа штаммапродущента Candida tropicalis. Y-456 в воздухе рабочей зоны

1. Дата проведения анализа	
2. Место отбора пробы	
3. Название лаборатории	
1. Юридический адрес организации	
Результаты микробиологического анализа	

ſ	Шифр или	Определяемый	Концентрация,
1	№ пробы	микроорганизм	кл /м³

Ответственный исполнитель Научный руководитель

Список литературы

- 1. ГОСТ 12.1.005—88 «ССБТ. Воздух рабочей зоны. Общие санитарно-гигиенические требования».
 - 2. ГОСТ 8.563-96. ГСИ «Методики выполнения измерений».
- 3. Положение об организации работы по технике безопасности в микробиологической промышленности.—М., 1980. 27 с.
- 4. Инструкции по устройству, требованиям безопасности и личной гигиены при работе в микробиологических лабораториях предприятий микробиологической промышленности,—М., 1977. 7 с.
- 5. Влодавец В. В., Немыря В. И. Санитарно-микологический контроль объектов окружающей среды на предприятиях микробиологической промышленности //Гиг. и сан., 1977. № 1. С. 25—28.
 - 6. Бабьева И. П., Зенова Г. М. Биология почв. -- М.: МГУ. С. 332.
- 7. Сагтон Д., Фотергилл А., Ринальди М. Определитель патогенных и условно патогенных грибов.—М.: Мир, 2001. 110 с.
- 8. Кашкин П. Н., Лисин В. В. Практическое руководство по медицинской микологии.—М.: Медицина, 1983. 153 с.
- 9. Kwon-Chung K. J., Bennett J. E. Medical mycology. Philadelphia: Lea & Febiger, 1992. P. 61—62.

Содержание

Предельно допустимые концентрации (ПДК) микроорганизмов-	
продуцентов, бактериальных препаратов и их компонентов в воздухе рабочей зоны: ГН 2.1.6.1762—03	1
Метод микробиологического измерения концентрации клеток	
Aspergillus awamori ВНИИгенетика 120/177 – продуцента глюкоамилазы в воздухе рабочей зоны: МУК 4.2.1776—03	9
Метод микробиологического измерения концентрации клеток	
Aspergillus terreus 44-62 — продуцента ловастатина в воздухе рабочей зоны: МУК 4.2.1777—03	15
Метод микробиологического измерения концентрации клеток микроорганизма Bacillus subtilis 65 - продуцента нейтральной протеиназы и амилазы в воздухе рабочей зоны: МУК 4.2.1778—03	21
Метод микробиологического измерения концентрации клеток микроорганизма Bacillus subtilis 72 - продуцента щелочной протеазы в воздухс рабочей зоны: МУК 4.2.1779—03	27
Метод микробиологического измерения концентрации клеток микроорганизма Bacillus subtilis 103 (Ч-15) – продуцента нейтральной протеазы в воздухе рабочей зоны: МУК 4.2.1780—03	33
Метод микробиологического измерения концентрации клеток микроорганизма <i>Bacillus licheniformis</i> 1001 — продуцента бацитрацина в воздухе рабочей зоны: МУК 4.2.1781—03	40
Метод микробиологического измерения концентрации клеток микроорганизма <i>Candida tropicalis</i> Y-456 – продуцента ксилита в воздухе рабочей зоны: МУК 4.2.1782—03	47
Метол микробиологического измерения концентрации клеток микроорганизма <i>Penicillium canescens</i> F-832 – продуцента ксиланазы в воздухе рабочей зоны: МУК 4.2.1783—03	53
Метод микробиологического измерения концентрации клеток микроорганизма <i>Trichoderma viride</i> 44-11-62/3 – продуцента комплекса целлюлолитических ферментов в воздухе рабочей зоны:	
МУК 4.2.1784—03	60

Предельно допустимые концентрации (ПДК) микроорганизмов-продуцентов, бактериальных препаратов и их компонентов в воздухе рабочей зоны

Гигиенические нормативы ГН 2.1.6.1762-03

Методические указания МУК 4.2.1776—4.2.1784—03

Тираж 50 экз Заказ № 2095

Отпечатано в ФГУП ЦПП