Государственное санитарно-эпидемиологическое нормирование Российской Федерации

4.1. МЕТОЛЫ КОНТРОЛЯ, ХИМИЧЕСКИЕ ФАТОРЫ

ОПРЕДЕЛЕНИЕ ОСТАТОЧНЫХ КОЛИЧЕСТВ ПЕСТИЦИДОВ В ПИЩЕВЫХ ПРОДУКТАХ, СЕЛЬСКОХОЗЯЙСТВЕННОМ СЫРЬЕ И ОБЪЕКТАХ ОКРУЖАЮЩЕЙ СРЕДЫ

Сборник методических указаний

MYK 4.1.2076-4.1.2088-06

Издание официальное

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАТОРЫ

ОПРЕДЕЛЕНИЕ ОСТАТОЧНЫХ КОЛИЧЕСТВ ПЕСТИЦИДОВ В ПИЩЕВЫХ ПРОДУКТАХ, СЕЛЬСКОХОЗЯЙСТВЕННОМ СЫРЬЕ И ОБЪЕКТАХ ОКРУЖАЮЩЕЙ СРЕДЫ

Сборник методических указаний

МУК 4.1.2076--4.1.2088--06

Издание официальное

ББК 51.21 О37

- Озт Определение остаточных количеств пестицидов в пищевых продуктах, сельскохозяйственном сырье и объектах окружающей среды: Сборник методических указаний.—М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2009—188с.
 - 1. Сборник подготовлен Федеральным научным центром гигиены им. Ф. Ф. Эрисмана (академик РАМН, проф. В. Н. Ракитский, проф. Т. В. Юдина); при участии специалистов Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека. Разработчики методов указаны в каждом из них.
 - 2. Рекомендованы к утверждению Комиссией по государственному санитарно-эпидемическому нормированию при Федеральной службе по надзору в сфере защиты прав потребителей и благополучия человека.
 - 3. Утверждены Главным государственным санитарным врачом Российской Федерации, Первым заместителем Министра здравоохранения Российской Федерации, академиком РАМН Г. Г. Онищенко.
 - 4. Введены впервые.

ББК 51.21

Формат 60х88/16 Печ. л. 11,75 Тираж 100 экз.

Тиражировано отделом издательского обеспечения Федерального центра гигиены и эпидемиологии Роспотребнадзора

117105, Москва, Варшавское ш., 19а Отделение реализации, тел./факс 952-50-89

Содержание

1. Методические указания по определению остаточных количеств глюфосинат	
аммония и его метаболита в зерне гороха газохроматографическом методом.	
MYK 4.1.2076-06	4
2. Методические указания по измерению концентраций дикамбы в	
атмосферном воздухе населенных мест методом газожидкостной хроматографии. МУК	
4.1.2077-06	2
3. Методические указания по опредслению остаточных количеств квинклорака	
в зерне риса методом капиллярной газожидкостной хроматографии.	
MYK 4.1.2078-06	5
4. Методические указания по определению остаточных количеств квинклорака	
в зерне риса методом высокоэффективной жидкостной хроматографии.	
МУК 4.1.2079-064	9
5. Методические указания по определению остаточных количеств люфенурона	
в томатах методом высокоэффективной жидкостной хроматографии.	
МУК 4.1.2080-066	2
6. Методические указания по определению остаточных количеств метамитрона в воде,	
почве, ботве и корнеплодах сахарной, столовой и кормовой свеклы методом	
капиллярной газожидкостной хроматографии. МУК 4.1.2081-067	2
7. Методические указания по определению остаточных количеств Трибенурон-метила	
в семенах и масле подсолнечника методом высокоэффективной жидкостной	
хроматографии. МУК 4.1.2082-06	7
8. Методические указания по определению остаточных количеств тиаметоксама в	
семенах и масле подсолнечника методом высокоэффсктивной жидкостной	_
хроматографии. МУК 4.1.2083-0610	6
9. Методические указания по определению остаточных количеств тебуконазола в	
семенах, масле и зеленой массе рапса методом капиллярной газожидкостной	_
хроматографии. МУК 4.1.2084-06	U
10. Методические указания по измерению концентраций тринексапак-этила в	
воздухе рабочей зоны методом высокоэффективной жидкостной хроматографии.	_
МУК 4.1.2085-06	2
11. Методические указания по определению остаточных количеств тринексапак-этила	
и его основного метаболита тринексапака-кислоты в воде, тринексапак-этила по	
метаболиту тринексапаку-кислоте в ночве, зерне и соломе зерновых	
колосовых культур методом высокоэффективной жидкостной хроматографии. МУК 4.1.2086-06	^
2.40 2. (1.1.2000 00:11111111111111111111111111111111	2
12. Методические указания по определению остаточных количеств	
Альфа-циперметрина в семенах и масле рапса методом газожидкостной хоматографии. МУК 4 1.2087-06	2
- Postarol parplini	Z
13. Мегодические указания по измерению концентраций эсфенвалерата	
в атмосферном воздухе населенных мест методом газожидкостной хроматографии.	e
MYK 4.1.2088-06	o

УТВЕРЖДАЮ

Руководитель Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главный государственный санитарный врач

Российской Федералии

К.Г. Онищенко

2006 жиюля 2006

Дата введения — с Гоминори 2004.

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ.

Методические указания по определению остаточных количеств квинклорака в зерне риса методом капиллярной газожидкостной хроматографии $\mathcal{L}^{\mathcal{I} \mathcal{I} \mathcal{I} \mathcal{I}}$ МУК 4.1. -06

Настоящие методические указания устанавливают метод капиллярной газожидкостной хроматографии для определения массовой концентрации квинклорака в зерне риса в диапазоне 0,025 - 0,25 мг/кг.

Квинклорак - действующее вещество препарата ФАЦЕТ, КС (250 г/л), фирма «БАСФ».

3,7-дихлорхинолин-8-карбоновая кислота (IUPAC)

C₁₀H₅Cl₂NO₂

Мол. масса 242.1

Бесцветное кристаллическое вещество со слабым запахом. Температура плавления: 274° C. При нагревании выше 237° C разрушается. Давление паров: менее 0,1 мПа (20° C). Коэффициент распределения н-октанол/вода: K_{OW} logP = -1,15 (pH 7). Плотность 1,75. Растворимость в этаноле, ацетоне – 2 г/кг; этилацетате, диэтиловом эфире – 1 г/кг; ацетонитриле, дихлорметане, толуоле, гексане – менее 1 г/кг (20° C). Растворимость в воде - 0,065 мг/кг (pH 7, 20° C).

Вещество устойчиво к нагреванию и свету, а также в диапазоне pH от 3 до 9. pKa $3.34~(20^{0}\mathrm{C})$.

Краткая токсикологическая характеристика:

Острая пероральная токсичность (LD_{50}) для крыс – 2680 мг/кг, мышей – более 5000 мг/кг; острая дермальная токсичность (LD_{50}) для крыс - более 2000 мг/кг; острая ингаляционная токсичность (LC_{50}) для крыс – более 5200 мг/м³ воздуха (4 часа).

Квинклорак не оказывает раздражающего действия на кожу и слизистую оболочку глаз кроликов.

Область применения препарата

Препарат ФАЦЕТ, КС (250 г/л), д.в. квинклорак – пред- и послевсходовый селективный гербицид для борьбы с сорными растениями на плантациях риса.

МДУ в рисе -0.05 мг/кг.

1. Метрологические характеристики

При соблюдении всех регламентированных условий проведения анализа в точном соответствии с данной методикой погрешность (и её составляющие) результатов измерений при доверительной вероятности P=0,95 не превышает значений, приведенных в таблице 1 для соответствующих диапазонов концентраций.

Таблица 1 Метрологические параметры

Анализи- руемый объект	Диапазон определяемых концентраций, мг/кг	Показатель точности (граница относительной погрешности), $\pm \delta$, % $P=0.95$	Стандартное отклонение повторяемости, σ_r , %	Предел повторяемо- сти, г, %	Предел воспроизво- димости, R, %
_	от 0,025 до 0,1 вкл.	50	5,9	16	19
Зерно риса	более 0,1 до 0,25	25	5,2	15	17

Полнота извлечения вещества, стандартное отклонение, доверительный интервал среднего результата для полного диапазона концентраций (n = 20) приведены в таблице 2.

	Метрологические параметры, P = 0,95, n = 20				
Анализируе- мый объект	Предел обнару- жения, мг/кг	Диапазон определяемых концентраций, мг/кг	Среднее значение определения %	Стандартное отклонение, S, %	Доверитель- ный интервал среднего результата, ±, %
Зерно риса	0,025	0,025 - 0,25	86,5	4,4	2,6

1. Метод измерений

Методика основана на определении вещества с помощью капиллярной газожидкостной хроматографии (ГЖХ) с детектором электронного захвата ионов после обработки образца зерна 0,1 N раствором гидроксида натрия, экстракции ацетоном, последовательной очистки экстракта перераспределением в системе несмешивающихся растворителей, затем на концентрирующем патроне Sep Pak Silica, превращения квинклорака в метиловый эфир обработкой диазометаном.

Количественное определение проводится методом абсолютной калибровки.

В предлагаемых условиях определения метод специфичен в присутствии пестицидов, применяемых в технологии выращивания риса.

3. Средства измерений, вспомогательные устройства, реактивы и материалы

FOCT 24104

3.1. Средства измерений

Газовый хроматограф «Кристалл-2000М», снабженный детектором электронного захвата ионов с пределом Номер Госреестра 14516-95 детектирования по линдану 5х10 -14 г/с, предназначенный для работы с капиллярной колонкой.

Весы аналитические ВЛА-200				1001 24104	
Весы лабораторные обще	го назнач	чения, с на	мишакодия	ΓΟCT 7328	
пределом взвешивания д	o 500	г и	пределом		
допустимой погрешности +/- 0,038 г					
Колбы мерные 2-25-2, 2-50-	2, 2-100-	2, 2-500 - 2		FOCT 1770	
Меры массы				ΓΟCT 7328	
Микрошприц МШ-1	ΓΟCT 20292				
Пипетки градуированные	2-го	класса	точности	ΓΟCT 29227	

Door a national DITA 200

вместимостью 1,0; 2,0; 5,0 и 10 см³

Эфир диэтиловый (для наркоза)

Пилетки градуированные 2-го класса точности ГОСТ 29227

вместимостью 25

Пробирки градуированные вместимостью 10 см³ ГОСТ 1770 Цилиндры мерные 2-го класса точности вместимостью ГОСТ 1770 25, 50, 100, 200 и 1000 см³

Допускается использование средств измерения с аналогичными или лучшими характеристиками.

3.2. Реактивы

Квинклорак, аналитический стандарт с содержанием действующего вещества 99,6% (ф. «БАСФ»)

Ацетон, осч	FOCT 2306
Вода деионизованная	ΓΟCT 6702
Гексан, хч	ТУ 6-09-4521
Калия гидроксид, хч	ΓΟCT 4328
Кислота серная, хч	ΓΟCT 4204
Метилен хлористый (дихлорметан), хч	ΓΟCT 12794
Метиламин гидрохлорид, ч	ТУ 6-09-3755-74
Метиловый спирт (метанол), хч	FOCT 6995
Мочевина, чда	ГОСТ 6691
Натрий азотистокислый, хч	ΓΟCT 4197
Натрий гидроксид (натр едкий), хч	ΓΟCT 4328
Натрий углекислый кислый (натрий двууглекислый), хч	ΓΟCT 4201
Натрий хлористый, хч	ΓΟCT 4233
Стекловата	
Спирт этиловый ректификованный	ΓΟCT P 51652-2000
	или ГОСТ 18300

Допускается использование реактивов иных производителей с аналогичной или более высокой квалификацией.

3.3. Вспомогательные устройства, материалы

Фармакопея СССР

Азот особой чистоты, из баллона ГОСТ 9293

Аппарат для встряхивания типа АВУ-6с	ТУ 64-1-2851-78		
Баня ультразвуковая фирмы Донау (Швейцария)			
Бумажные фильтры «красная лента», обеззоленные или	ТУ 6-09-2678-77		
фильтры из хроматографической бумаги Ватман ЗММ			
Воронка Бюхнера	ΓΟCT 25336		
Воронки делительные вместимостью 500 см ³	ΓΟCT 9737		
Воронки конусные диаметром 30-37 и 60 мм	FOCT 25336		
Груша резиновая			
Индикаторная бумага, универсальная			
Колба Бунзена	ΓΟCT 25336		
Колбы круглодонная на шлифе вместимостью 300, 500 и			
1000 cm ³			
Колбы плоскодонные вместимостью 100, 250, 500 см ³	ΓΟCT 9737		
Колбы грушевидные на шлифе вместимостью 100-150	FOCT 9737		
cm ³			
Колонка капиллярная DB-5, длиной 30 м, внутренним			
диаметром 0,25 мм, толщина пленки сорбента 0,25 мкм			
Лед			
Насос водоструйный вакуумный	ГОСТ 10696		
Патроны для твердофазной экстракции Sep Pak Silica,			
(Waters, США), объем сорбента 2 см ³			
Ректификационная колонна с числом теоретических			
тарелок не менее 50			
Ротационный вакуумный испаритель B-169 фирмы Buchi,			
Швейцария			
Стаканы химические, вместимостью 100, 500 и 2000 см ³	ΓΟCT 25336		
Стекловата			
Стеклянные палочки			
Термометр лабораторный	FOCT 16590		
Установка для перегонки растворителей			
Холодильник водяной обратный	FOCT 25336-82		
Шприцы медицинские с разъемом Льюера вместимостью 5	ГОСТ 22090		

и 10 см³

Допускается применение другого оборудования с аналогичными или лучшими техническими характеристиками.

4. Требования безопасности

- 4.1. При выполнении измерений необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007, требования электробезопасности при работе с электроустановками по ГОСТ 12.1.019, а также требования, изложенные в технической документации на газовый хроматограф.
- 4.2. Помещение должно соответствовать требованиям пожаробезопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009. Содержание вредных веществ в воздухе не должно превышать норм, установленных ГН 2.2.5.1313-03 «Предельно-допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны». Организация обучения работников безопасности труда по ГОСТ 12.0.004.

5. Требования к квалификации операторов

К выполнению измерений допускают специалистов, имеющих квалификацию не ниже лаборанта-исследователя, с опытом работы на газовом хроматографе.

К проведению пробоподготовки допускают оператора с квалификацией «лаборант», имеющего опыт работы в химической лаборатории.

6. Условия измерений

При выполнении измерений соблюдают следующие условия:

- процессы приготовления растворов и подготовки проб к анализу проводят при температуре воздуха (20±5)⁰С и относительной влажности не более 80%.
- выполнение измерений на жидкостном хроматографе проводят в условиях, рекомендованных технической документацией к прибору.

7. Подготовка к выполнению измерений

Измерениям предшествуют следующие операции: получение N-нитрозо-N-метилмочевины (при необходимости), раствора диазометана, очистка органических растворителей (при необходимости), приготовление градуировочных растворов, установление градуировочной характеристики.

7.1. Приготовление 40%-ного раствора гидроксида калия

В мерную колбу вместимостью 50 см³ помещают 20 г гидроксида натрия, растворяют в 25-30 см³ дистиллированной воды, доводят водой до метки.

7.2. Получение N-нитрозо-N-метилмочевины

В отсутствии коммерческого препарата нитрозометилмочевины осуществляют его синтез.

Все работы необходимо проводить в вытяжном шкафу!

В круглодонную колбу на шлифе вместимостью 1 дм³, снабженную обратным холодильником, помещают 80 г метиламина гидрохлорида и 300 г мочевины, растворяют содержимое в 400 см³ воды и кипятят 3 ч с обратным холодильником на водяной бане. Раствор в колбе охлаждают до комнатной температуры и добавляют в него 110 г нитрита натрия, охлаждают в бане со льдом, содержащим NaCl, до 0°C и медленно при перемешивании вливают в смесь 600 г льда и 60 см³ концентрированной серной кислоты, помещенную в стакан вместимостью 2 дм³, охлаждаемый снаружи смесью льда с поваренной солью. Выпавшие кристаллы нитрозометилмочевины немедленно отфильтровывают на воронке Бюхнера, хорошо отсасывают под вакуумом и промывают на фильтре ледяной водой.

Внимание! Нитрозометилмочевину хранят в темной склянке в холодильнике, так как под действием света и тепла она может взорваться.

7.3. Получение раствора диазометана

Диазометан взрывоопасен и очень ядовит. Все работы необходимо проводить в вытяжном шкафу!

В коническую колбу на 100 см³ вносят 20 см³ 40%-ного раствора КОН и 50 см³ диэтилового эфира, колбу помещают в баню со льдом и охлаждают до температуры 2-5°C. В охлажденную смесь порциями при перемешивании на магнитной мешалке или путем встряхивания вносят 5 г нитрозометилмочевины. Реакционную смесь выдерживают на холоду 10 минут. Затем эфирный слой сливают в чистую коническую колбу вместимостью 100 см³, добавляют 10-15 гранул КОН и колбу оставляют в бане со льдом на 2,5-3 часа для осущения раствора.

Раствор диазометана в эфире годен к употреблению при хранении в холодильнике в течение 1-2 суток. При хранении сосуды с диазометаном нельзя плотно закрывать!

7.4. Очистка органических растворителей

7.4.1, Ацетон

Растворитель сушат над молекулярными ситами 4 A и подвергают фракционной перегонке на ректификационной колонне, целиком собранной из стекла с числом

теоретических тарелок не менее 30. До начала отбора главной фракции приемник несколько раз промывают дистиллятом. Перегонку продолжают до тех пор, пока в сосуде для перегонки не останется приблизительно 100 см³ ацетона. Температуру водяной бани следует снижать по мере уменьшения объема ацетона, во всех случаях она не должна превышать температуру кипения ацетона более чем на 20°.

7.4.2. Хлористый метилен

Хлористый метилен промывают последовательно 5%-ным водным раствором карбоната натрия, насыщенным раствором хлористого кальция, сушат над безводным карбонатом калия и перегоняют или подвергают ректификационной перегонке на колонне с числом теоретических тарелок не менее 50.

7.5. Приготовление 0,1 N раствора гидроксида натрия

В мерную колбу вместимостью 1000 см³ помещают 4 г гидроксида натрия, доводят водой до метки, тщательно перемешивают.

7.6. Приготовление градуировочных растворов и раствора внесения

7.6.1. Исходный раствор квинклорака для градуировки (концентрация 100 мкг/см³). В мерную колбу вместимостью 100 см³ помещают 0,01 г квинклорака, растворяют в 50-70 см³ ацетона, доводят до метки этим же растворителем, тщательно перемешивают. Раствор хранится в холодильнике в течение месяца.

Градуировочные растворы № 2-5 квинклорака готовят объемным методом путем последовательного разбавления исходного раствора.

7.6.2. Раствор квинклорака для внесения (концентрация 10 мкг/см³).

В мерную колбу вместимостью 100 см³ помещают 1,0 см³ исходного раствора с концентрацией 100 мкг/см³ (п. 7.7.1.), доводят до метки ацетоном, тщательно перемешивают.

Раствор хранится в холодильнике не более месяца.

Этот раствор используют для приготовления проб с внесением при оценке полноты извлечения действующего вещества методом «внесено-найдено», а также контроле качества результатов измерений методом добавок.

7.6.3. Исходный раствор метилового эфира квинклорака для градуировки (концентрация квинклорака 1 мкг/см³). В круглодонную колбу вместимостью 50 см³ помещают 0,5 см³ исходного раствора квинклорака с концентрацией 100 мкг/см³, вносят 5 см³ раствора диазометана, выдерживают 10 мин при комнатной температуре. Отдувают растворитель потоком теплого воздуха (помещая колбу на слабо подогретую

водяную баню) досуха. Остаток растворяют в смеси гексан-ацетон (3:1, по объему) порциями по 10-15 см³, перенося в мерную колбу вместимостью 50 см³, доводят этой же смесью до метки, перемешивают. Раствор хранится в холодильнике не более 15-ти лней.

Растворы № 2-5 готовят объемным методом путем последовательного разбавления исходного раствора.

7.6.4. Рабочие растворы N
ot N
ot 2-5 метилового эфира квинклорака для градуировки (концентрация квинклорака 0.025 - 0.25 мкг/см³).

В 4 мерные колбы вместимостью 100 см³ помещают по 2.5, 5.0, 10 и 25 см³ исходного раствора метилового эфира квинклорака с концентрацией квинклорака 1 мкг/см³ (п. 7.6.3.), доводят до метки смесью гексан-ацетон (3:1, по объему), тщательно перемешивают, получают рабочие растворы №№ 2 - 5 с концентрацией квинклорака 0.025, 0.05, 0.1 и 0.25 мкг/см³, соответственно.

Растворы хранятся в холодильнике не более 5-ти дней.

7.8. Установление градуировочной характеристики

Градуировочную характеристику, выражающую зависимость площади пика (мВ*сек) от концентрации квинклорака в растворе (мкг/см³), устанавливают методом абсолютной калибровки по 4-м растворам для градуировки №№ 2 \sim 5.

В испаритель хроматографа вводят 1 мм³ каждого градуировочного раствора и анализируют в условиях хроматографирования по п. 9.3. Осуществляют не менее 3-х параллельных измерений.

8. Отбор и хранение проб

Отбор проб производится в соответствии с правилами, определенными ГОСТами 6293-90 «Рис. Требования при заготовках и поставках», 13586.3-83 «Зерно. Правила приемки и методы отбора проб», «Унифицированными правилами отбора проб сельскохозяйственной продукции, пищевых продуктов и объектов окружающей среды для определения микроколичеств пестицидов (№ 2051-79 от 21.08.79).

Зерно подсушивают в темноте до постоянного веса и хранят в тканевых мешочках в сухом, защищенном от света месте при комнатной температуре не более 6-ти месяцев. Измельченные пробы зерна (аналитические образцы массой 20 г) замораживают и хранят при температуре –18°C.

9. Выполнение определения

9.1. Экстракция

Образец измельченного зерна риса массой 50 г помещают в плоскодонную колбу вместимостью 500 см³ на шлифе, добавляют 100 см³ 0,1 N раствора гидроксида натрия и помещают на встряхиватель на 1 час. Затем в набухшую массу вносят 200 см³ ацетона, перемешивают путем встяхивания в течение 5-ти мин.

Пробам дают отстояться 1 час, затем надосадочную жидкость фильтруют на воронке Бюхнера с помощью разряжения, создаваемого водоструйным насосом, через двойной фильтр «красная лента», осадок на фильтре промывают 30 см³ ацетона. Объединенные отфильтрованный экстракт и промывку переносят в круглодонную колбу вместимостью 300 см³, вносят 3 см³ концентрированной серной кислоты перемешивают и упаривают до водного остатка (85 – 90 см³).

К водному остатку осторожно (пенообразование!) добавляют порциями твердый гидрокарбонат натрия (около 6 г), доводя рН до 8 (контроль по индикаторной бумаге). Затем раствор переносят в делительную воронку вместимостью 500 см³ и подвергают очистке по п. 9.2.

9.2. Очистка экстракта в системе несмешивающихся растворителей

К экстракту в делительной воронке добавляют 100 см³ хлористого метилена, интенсивно встряхивают в течение 2-х мин. После полного разделения слоев нижнюю органическую фазу отделяют и отбрасывают. Процедуру промывки экстракта повторяют порцией дихлорметана 100 см³. Затем водный раствор подкисляют концентрированной серной кислотой до рН 2 (около 1,5-2 см³), контролируя его значение по индикаторной бумаге. Вносят в воронку 100 см³ хлористого метилена, интенсивно встряхивают в течение 2-х мин. После полного разделения слоев нижнюю органическую фазу отделяют, переносят в круглодонную колбу вместимостью 500 см³, фильтруя через слой безводного сульфата натрия (2 см), помещенный на бумажном фильтре в конусной химической воронке. Экстракцию повторяют трижды порциями хлористого метилена по 100 см³. Для улучшения разделения фаз в делительную воронку вносят насыщенный раствор хлористого натрия.

Объединенный дихлорметановый экстракт упаривают на ротационном вакуумном испарителе при температуре бани не выше 40° C до объема 3-4 см³. Остаток с помощью пипетки переносят в градуированную пробирку вместимостью 10 см^3 , доводят объем раствора до 10 см^3 порциями дихлорметана по 2-3 см³, предварительно ополаскивая

ими колбу. Далее проводят очистку по п. 9.3.

9.3. Очистка экстракта на концентрирующем патроне Sep Pak Silica

Аликвоту полученного по п. 9.2. раствора объемом в 1 см³ вносят с помощью медицинского шприца на сухой концентрирующий патрон Sep Pak Silica со скоростью пропускания раствора 1-2 капли в сек. Колбу ополаскивают 1 см³ хлористого метилена, который также наносят на патрон. После нанесения пробы патрон промывают 3 см³ смеси метанол-хлористый метилен (5:95, по объему), элюат отбрасывают. Вещество элюируют с патрона 4 см³ смеси метанол-хлористый метилен (40:60, по объему), собирая элюат в круглодонную колбу, упаривают при температуре не выше 40°C досуха. Остаток растворяют в 0.5 см³ ацетона и подвергают дериватизации по п. 9.4.

9.4. Дериватизация

К раствору в колбе, полученному по п. 9.3., прибавляют 2 см³ раствора диазометана, выдерживают 10 мин при комнатной температуре. Если за этот промежуток времени раствор обесцвечивается, вносят дополнительно 2 см³ раствора диазометана и вновь выдерживают 10 мин при комнатной температуре. Отдувают растворитель (помещая колбу на слабо подогретую водяную баню) досуха. Остаток растворяют в 5 см³ смеси гексан-ацетон (3:1, по объему) и анализируют в условиях хроматографирования по п. 9.5.

9.3. Условия хроматографирования

Хроматограф газовый «Кристалл-2000М» с детектором электронного захвата ионов.

Колонка капиллярная DB-5, длиной 30 м, внутренним диаметром 0,25 мм, толщина пленки сорбента 0,25 мкм

Температура детектора: 310°C

испарителя: 270°С

Температура термостата колонки программированная. Начальная температура - 210° C, выдержка 5 мин, нагрев колонки со скоростью 5 град./мин до температуры 250° C, выдержка 1 мин, далее нагрев со скоростью 30 град./мин до температуры 270° C.

Скорость газа 1 (азот): 31,2 см/сек, давление 125 кПа.

Газ 2 (азот): деление потока 1: 8,4; сброс 8,1 см³/мин

Хроматографируемый объем: 1 мм³

Ориентировочное время удерживания метилового эфира квинклорака: 6 мин 50 сек

Линейный диапазон детектирования: 0,025 - 0,25 нг

Образцы, дающие пики, большие, чем градуировочный раствор с концентрацией 0,25 мкг/см³, разбавляют смесью гексан-ацетон (3:1, по объему).

Пробу вводят в испаритель хроматографа не менее двух раз. Устанавливают площадь пика, с помощью градуировочного графика определяют концентрацию квинклорака в хроматографируемом растворе.

10. Обработка результатов анализа

Содержание квинклорака в пробе (Х. мг/кг) рассчитывают по формуле:

Б - концентрация квинклорака, найденная по градуировочному графику в соответствии с величиной площади хроматографического пика, мкг/см³:

V - объем экстракта, подготовленного для хроматографирования, см³;

т - масса анализируемого образца, г.

К = 10, с учетом объема экстракта, взятого для анализа.

11. Проверка приемлемости результатов параллельных определений

За результат анализа принимают среднее арифметическое результатов двух параллельных определений, расхождение между которыми не превышает предела повторяемости (1):

$$\frac{2 \cdot |X_1 - X_2| \cdot 100}{(X_1 + X_2)} \le r \tag{1}$$

где Х1, Х2- результаты параллельных определений, мг/кг;

r- значение предела повторяемости (таблица 1), при этом $r = 2.8\sigma_r$.

При невыполнении условия (1) выясняют причины превышения предела повторяемости, устраняют их и вновь выполняют анализ.

12. Оформление результатов

Результат анализа представляют в виде:

 $(\overline{X} \pm \Delta)$ мг/кг при вероятности P= 0.95,

где \overline{X} - среднее арифметическое результатов определений, признанных приемлемыми, мг/кг;

∆- граница абсолютной погрешности, мг/кг;

$$\Delta = \delta * X / 100.$$

 δ - граница относительной погрешности методики (показатель точности в соответствии с диапазоном концентраций, таблица 1), %.

Если содержание компонента менее нижней границы диапазона определяемых концентраций, результат анализа представляют в виде:

«содержание квинклорака в пробе зерна менее 0,025 мг/ кг»*

* - 0,025 мг/кг - предел обнаружения.

13. Контроль качества результатов измерений

Оперативный контроль погрешности и воспроизводимости измерений осуществляется в соответствии с ГОСТ Р ИСО 5725-1-6-2002 «Точность (правильность и прецинзионность) методов и результатов измерений».

- 13.1. Стабильность результатов измерений контролируют перед проведением измерений, анализируя один из градуировочных растворов.
- 13.2. Плановый внутрилабораторный оперативный контроль процедуры выполнения анализа проводится методом добавок.

Величина добавки C_a должна удовлетворять условию:

$$C_o = \Delta_{A,\overline{X}} + \Delta_{A,\overline{X}}$$
,

где $\pm \Delta_{s,\overline{s'}}(\pm \Delta_{s,\overline{s'}})$ — характеристика погрешности (абсолютная погрешность) результатов анализа, соответствующая содержанию компонента в испытуемом образце (расчетному значению содержания компонента в образце с добавкой соответственно) мг/кг, при этом:

$$\Delta_n = \pm 0.84 \Delta$$

где Δ- граница абсолютной погрешности, мг/кг:

$$\Delta = \delta * X / 100,$$

δ- граница относительной погрешности методики (показатель точности в соответствии с диапазоном концентраций, таблица 1), %.

Результат контроля процедуры К, рассчитывают по формуле:

$$K_{\kappa} = \overline{X'} - \overline{X} - C_{\lambda}$$

где \overline{X}' , \overline{X} , C_{σ} среднее арифметическое результатов параллельных определений (признанных приемлемыми по п.11) содержания компонента в образце с добавкой, испытуемом образце, концентрация добавки, соответственно, мг/кг;

Норматив контроля К рассчитывают по формуле

$$K = \sqrt{\Delta^2_{\alpha, \overline{X^*}} + \Delta^2_{\alpha, \overline{X}^*}}$$

Проводят сопоставление результата контроля процедуры (K_k) с нормативом контроля (K).

Если результат контроля процедуры удовлетворяет условию

$$|K_{\kappa}| \leq K,$$
 (2)

процедуру анализа признают удовлетворительной.

При невыполнении условия (2) процедуру контроля повторяют. При повторном невыполнении условия (2) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

13.3. Проверка приемлемости результатов измерений, полученных в условиях воспроизводимости:

Расхождение между результатами измерений, выполненных в двух разных лабораториях, не должно превышать предела воспроизводимости (R)

$$\frac{2 \cdot \left| X_1 - X_2 \right| \cdot 100}{(X_1 + X_2)} \le R \tag{3}$$

где X_1, X_2 — результаты измерений в двух разных лабораториях, мг/кг;

R – предел воспроизводимости (в соответствии с диапазоном концентраций, таблица 1), %.

14. Разработчики.

Юдина Т.В., Федорова Н.Е., Горячева Л.В. (Федеральный научный центр гигиены им. Ф.Ф. Эрисмана); Иванов Г.Е. (Роспотребнадзор).