УТВЕРЖДАЮ

Главный государственный санитарный врач Российской Федерации, Первый заместитель Министра здравоохранения Российской Федерации

Г. Г. Онишенко

29 июня 2003 г.

Дата введения: с момента утверждения

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Спектрофотометрическое измерение массовых концентраций (3,4-диэтоксифенил) уксусной кислоты в воздухе рабочей зоны


Методические указания МУК 4.1.1630—03

1. Область применения

Настоящие методические указания устанавливают количественный спектрофотометрический анализ воздуха рабочей зоны на содержание (3,4-диотоксифения) уксусной кислоты в диапазоне концентраций 0,25—2,00 мг/м³.

2. Характеристика вещества

2.1. Структурная формула

- 2.2. Эмпирическая формула: C₁₂H₁₆O₄.
- 2.3. Молекулярная масса: 224,0.
- 2.4. Регистрационный номер CAS 38 464-04-9.
- 2.5. Физико-химические свойства.
- (3,4-Диэтоксифенил) уксусная кислота светло-коричневый с желтоватым оттенком кристаллический порошок, $t_{\kappa un}$ 135—160 °C при ат-

мосферном давлении 3—5 мм рт. ст, нерастворим в воде, растворим в ацетоне, этаноле, толуоле.

Агрегатное состояние в воздухе – аэрозоль.

2.6. Токсикологическая характеристика.

Обладает общетоксическим действием.

Ориентировочный безопасный уровень воздействия (ОБУВ) (3,4-диэтоксифения) уксусной кислоты в воздухе рабочей зоны -0.5 мг/м^3 .

3. Погрешность измерений

Методика обеспечивает выполнение измерений (3,4-диэтоксифенил) уксусной кислоты с погрешностью, не превышающей \pm 15,1 %, при доверительной вероятности 0,95.

4. Метод измерений

Измерение массовой концентрации (3,4-диэтоксифенил) уксусной кислоты выполняют методом спектрофотометрии.

Метод основан на способности растворов (3,4-диэтоксифенил) уксусной кислоты в этаноле поглощать свет в ультрафиолетовой области спектра.

Измерение проводят при длине волны 210 нм.

Отбор проб проводят с концентрированием.

Нижний предел измерения содержания (3,4-диэтоксифенил) уксусной кислоты – 5 мкг в анализируемом объеме пробы.

Нижний предел измерения концентрации (3,4-диэтоксифенил) уксусной кислоты в воздухе – $0,25\,$ мг/м³ (при отборе 20 дм³ воздуха).

Определению не мешают сопутствующие вещества: уксусная кислота, этанол, гексан.

5. Средства измерений, вспомогательные устройства, материалы, реактивы

При выполнении измерений применяют следующие средства измерений, вспомогательные устройства, материалы и реактивы.

5.1. Средства измерений, вспомогательные устройства, материалы

Спектрофотометр марки СФ-46	
Аспирационное устройство марки 822	ГОСТ 2.6.01—86
Фильтродержатель	ТУ 95.72.05—77
Колбы мерные, вместимостью 100 см ³	ΓΟCT 1770—74E
Пипетки, вместимостью 0,1, 1, 5 и 10 см ³	ГОСТ 29227—91
Весы аналитические лабораторные	
ВЛА-200	ГОСТ 24104—88Е

Кюветы с толщиной оптического слоя 10 мм Фильтры АФА-ВП-10 ТУ 95-743—80 Пробирки колориметрические, вместимостью 20 см³ ГОСТ 25336—82Е Бюксы стеклянные, вместимостью 50 см³ ГОСТ 25336—82Е

5.2. Реактивы

(3,4-Диэтоксифения) уксусная кислота с содержанием основного вещества не менее 98 % ТУ 2636-001-00203275—01 Спирт этиловый, хч ГОСТ 5962—67

Допускается применение иных средств измерений, вспомогательных устройств, реактивов и материалов с техническими и метрологическими характеристиками и квалификацией, не хуже приведенных в разделе.

6. Требования безопасности

- 6.1. При работе с реактивами соблюдают требования безопасности, установленные для работы с токсичными, едкими и легковоспламеняющимися веществами по ГОСТ 12.1.005—88.
- 6.2. При проведении анализов горючих и вредных веществ должны соблюдаться требования противопожарной безопасности по ГОСТ 12.1.004—76.
- 6.3. При выполнении измерений с использованием спектрофотометра соблюдают правила электробезопасности в соответствии с ГОСТ 12.1.019—79 и инструкцией по эксплуатации прибора.

7. Требования к квалификации операторов

К выполнению измерений и обработке их результатов допускаются лица с высшим или среднеспециальным образованием, имеющие навыки работы на спектрофотометре.

8. Условия измерений

- 8.1. Приготовление растворов и подготовку проб к анализу проводят в нормальных условиях при температуре воздуха (20 ± 5) °C, атмосферном давлении 84—106 кПа и влажности воздуха не более 80 %.
- 8.2. Выполнение измерений на спектрофотометре проводят в условиях, рекомендованных технической документацией к прибору.

9. Подготовка к выполнению измерений

Перед выполнением измерений проводят следующие работы: приготовление растворов, подготовку спектрофотометра, установление градуировочной характеристики, отбор проб.

9.1. Приготовление растворов

9.1.1. Основной стандартный раствор (3,4-диэтоксифенил) уксусной кислоты с концентрацией 100 мкг/мл готовят растворением 10 мг вещества в этаноле в мерной колбе вместимостью 100 см³.

Раствор устойчив в течение 7 дней при хранении в холодильнике в бюксах с притертыми пробками.

9.2. Подготовка прибора

Подготовку спектрофотометра проводят в соответствии с руководством по его эксплуатации.

9.3. Установление градуировочной характеристики

Градуировочную характеристику, выражающую зависимость оптической плотности раствора от массы (3,4-диэтоксифенил) уксусной кислоты, устанавливают по 5 сериям растворов из 5 параллельных определений для каждой серии, согласно табл. 1.

Таблица 1 Растворы для установления градуировочной характеристики при определении (3,4-диэтоксифенил) уксусной кислоты

№ стан- дарта	Основной стандартный раствор анализируемого вещества, см3	Этанол, см ³	Содержание (3,4-диэтоксифенил) уксусной кислоты в градуиро- вочном растворе, мкг
1	0,0	5,0	0
2	0,05	49,5	5
3	0,1	4,9	10
4	0,2	4,8	20
5	0,3	4,7	30
6	0,4	4,6	40

Градуировочные растворы устойчивы в течение 24 ч.

Измеряют оптическую плотность растворов в кюветах с толщиной оптического слоя 10 мм при длине волны 210 нм по отношению к раствору сравнения, не содержащему определяемого вещества (раствор № 1 по табл. 1).

Строят градуировочный график: на ось ординат наносят значения оптических плотностей градуировочных растворов, на ось абсцисссоответствующие им величины содержания вещества в градуировочном растворе (мкг).

Проверка градуировочного графика проводится 1 раз в три месяца или в случае использования новой партии реактивов, изменения условий анализа, после ремонта прибора.

9.4. Отбор пробы воздуха

Воздух с объемным расходом 2 дм 3 /мин аспирируют через фильтр АФА-ВП-10, помещенный в фильтродержатель. Для измерения ½ ОБУВ (3,4-диэтоксифенил) уксусной кислоты необходимо отобрать 20 дм 3 воздуха.

Пробы хранятся в холодильнике в бюксах с притертыми пробками. Срок хранения – не более 7 дней.

10. Выполнение измерения

Фильтр с отобранной пробой помещают в бюкс и заливают 5 см³ этанола. Оставляют на 10—15 мин, периодически помешивая стеклянной палочкой. Степень десорбции (3,4-диэтоксифенил) уксусной кислоты с фильтра 98 %.

Далее анализ проводят аналогично градуировочным растворам. Оптическую плотность анализируемого раствора пробы измеряют аналогично градуировочным растворам по сравнению с раствором сравнения, который готовят одновременно и аналогично пробам, используя чистый фильтр.

Количественное определение содержания (3,4-диэтоксифенил) уксусной кислоты (мкг) в анализируемом объеме проводят по предварительно построенному градуировочному графику.

11. Вычисление результатов измерения

Массовую концентрацию (3,4-диэтоксифенил) уксусной кислоты в воздухе (C, мг/м³) вычисляют по формуле:

$$C = \frac{a}{V}$$
, где

a — содержание вещества в анализируемом объеме раствора пробы, найденное по градуировочному графику, мкг;

V – объем воздуха (дм 3), отобранного для анализа и приведенного к стандартным условиям (см. прилож. 1);

C – значение массовой концентрации анализируемого компонента в пробе.

12. Оформление результатов анализа

Результат количественного анализа (3,4-диэтоксифенил) уксусной кислоты представляют в виде ($C\pm0.01\cdot\delta_{\Sigma}\cdot C$) мг/м³, P=0.95, где $\delta_{\Sigma}-$ характеристика погрешности; C- значение массовой концентрации анализируемого компонента в пробе.

13. Контроль погрешности методики КХА

Значения характеристики погрешности, норматива оперативного контроля погрешности и норматива оперативного контроля воспроизводимости приведены в табл. 2.

Таблица 2

Диапазон	Наименование мстрологической характеристики			
определяемых массовых концентраций (3,4-диэтоксифенил) уксусной кислоты, мг/м ³	Границы относительной погрешности $\pm \delta_{\Sigma}$ % ($P = 0.95$)	Норматив опсративного контроля воспроизводимости, <i>D</i> , % (<i>P</i> = 0,95, <i>m</i> = 2)	Норматив оперативного контроля погрешности, <i>K</i> , % (<i>P</i> = 0,90, <i>m</i> = 3)	
0,25—2,00	15,1	17,9	17,9	

13.1. Оперативный контроль воспроизводимости

Образцами для контроля являются реальные пробы воздуха рабочей зоны. Объем отобранной для контроля пробы должен соответствовать удвоенному объему, необходимому для проведения анализа по методике.

После отбора пробы экстракт с фильтра делят на две равные части и анализируют в точном соответствии с прописью методики, максимально варьируя условия проведения анализа, т. е. получают два результата анализа в разных лабораториях или в одной, используя при этом разные наборы мерной посуды, разные партии реактивов. Два результата анализа не должны отличаться друг от друга более чем на величину допускаемых расхождений между результатами анализа:

$$2|C_1-C_2| < 0,01D|C_1+C_2|$$
, где

 C_{I} – результат анализа рабочей пробы;

 C_2 — результат анализа этой же пробы в условиях межлабораторной воспроизводимости;

D – допустимые расхождения между результатами анализа одной и той же пробы, табл. 2.

При превышении норматива оперативного контроля воспроизводимости эксперимент повторяют. При повторном превышении указанного норматива D выясняют причины, приводящие к неудовлетворительным результатам контроля, и устраняют их.

13.2. Оперативный контроль погрешности

Оперативный контроль погрешности выполняют в одной серии с КХА рабочих проб.

Образцами для контроля являются реальные пробы воздуха рабочей зоны. Объем отобранной для контроля пробы должен соответствовать удвоенному объему, необходимому для проведения анализа по методике. После отбора пробы экстракт с фильтра делят на две равные части, первую из которых анализируют в точном соответствии с прописью методики и получают результат анализа исходной рабочей пробы -С1. Вторую часть разбавляют соответствующим растворителем в два раза и снова делят на две равные части, первую из которых анализируют в точном соответствии с прописью методики, получая результат анализа рабочей пробы, разбавленной в два раза, $-C_2$. Во вторую часть делают добавку анализируемого компонента (Х) до массовой концентрации исходной рабочей пробы (C_I) (общая концентрация не должна выходить за верхнюю границу диапазона измерения) и анализируют в точном соответствии с прописью методики, получая результат анализа рабочей пробы, разбавленной в два раза, с добавкой – C_3 . Результаты анализа исходной рабочей пробы — C_I , рабочей пробы, разбавленной в два раза, — C_2 и рабочей пробы, разбавленной в два раза, с добавкой — C_3 получают по возможности в одинаковых условиях, т. е. их получает один аналитик с использованием одного набора мерной посуды, одной партии реактивов и т. д.

Решение об удовлетворительной погрешности принимают при выполнении условия:

$$|C_3 - C_2 - X| + |2C_2 - C_1| < 0.01 K \cdot C_1$$
, где

 C_{I} – результат анализа рабочей пробы;

 C_2 – результат анализа рабочей пробы, разбавленной в два раза;

 C_3 – результат анализа рабочей пробы, разбавленной в два раза, с добавкой анализируемого компонента;

Х – величина добавки анализируемого компонента;

K – норматив оперативного контроля погрешности, табл. 2.

14. Нормы затрат времени на анализ

Для проведения серии анализов из 6 проб требуется 1 ч 30 мин.

Методические указания разработаны НИЦ «ЭКОС», Москва (В. А. Минаев).