Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт расходометрии» (ФГУП «ВНИИР»)

УТВЕРЖДАЮ

Заместитель директора ФГУП «ВНИИР»

по научной работ

M.C. Hemin

« Z/ »

РЕКОМЕНДАЦИЯ

Государственная система обеспечения единства измерений

Комплекс измерительно-вычислительный ИМЦ-03

Методика поверки

MИ 2587- 2005

ПРЕДИСЛОВИЕ

1 РАЗРАБОТАНА

ЗАО «ИМС Инжиниринг»

исполнители:

Усманов Р.Х., Аблина Л.В., Приймак Е.Н.

2 РАЗРАБОТАНА

ФГУП ВНИИР

исполнители:

Проккоев В.В., Шуляк Л.Я., Анисимова Е.А.

3 УТВЕРЖДЕНА

ФГУП ВНИИР 21.09.2005 г.

4 ЗАРЕГИСТРИРОВАНА

ФГУП ВНИИМС 02.12.2005 г.

4 B3AMEH

МИ 2587-2000

Настоящая рекомендация не может быть полностью или частично воспроизведена, тиражирована и распространена без разрешения ЗАО «ИМС Инжиниринг» и ФГУП ВНИИР.

Содержание

1 Область применения	1
2 Обозначения и сокращения	1
3 Операции поверки	2
4 Средства поверки	3
5 Требования безопасности	3
6 Условия поверки	3
7 Подготовка к поверке	3
8 Проведение поверки	4
9 Обработка результатов измерений	8
10 Оформление результатов поверки	15
Приложение А Схемы подключения УПВА к ИВК	16
Приложение Б Форма протокола поверки ИВК	18
Приложение В Форма протокола проверки алгоритмов вычислений ИВК	22
Приложение Г Справочные данные	25
Библиография	27

Рекомендация

Государственная система обеспечения единства измерений.	
Комплекс измерительно-вычислительный ИМЦ-03.	МИ 2587-2005
Методика поверки.	

1 Область применения

Настоящая рекомендация распространяется на комплекс измерительновычислительный ИМЦ-03, предназначенный для преобразования входных электрических сигналов, поступающих от измерительных преобразователей, в значения величин (объем и масса жидких продуктов) и для определения метрологических характеристик преобразователей расхода.

Настоящая рекомендация устанавливает методику первичной и периодической поверок ИВК ИМЦ-03.

Межповерочный интервал: не более одного года.

2 Обозначения и сокращения

В настоящей рекомендации приняты следующие обозначения и сокращения:

продукт – нефть и нефтепродукты;

система учета – система измерений количества и показателей качества продукта;

ИВК – измерительно-вычислительный комплекс ИМЦ-03;

БИЛ - блок измерительных линий;

ИЛ – измерительная линия;

БИК – блок измерений показателей качества;

ГХ – градуировочная характеристика;

МХ - метрологические характеристики;

КМХ – контроль метрологических характеристик;

ПТ – преобразователь температуры;

ПД – преобразователь давления;

ПП – преобразователь плотности;

ПР – преобразователь расхода;

ПОР – преобразователь объемного расхода;

ПМР – преобразователь массового расхода;

ЭПР – эталонный преобразователь расхода;

ЭПОР – эталонный преобразователь объемного расхода;

ЭПМР – эталонный преобразователь массового расхода;

КПР – контрольный преобразователь расхода;

КПОР – контрольный преобразователь объемного расхода;

КПМР – контрольный преобразователь массового расхода;

ПУ – поверочная установка;

ТПУ – трубопоршневая поверочная установка;

КП – компакт-прувер;

УПВА – устройство для поверки вторичной аппаратуры.

3 Операции поверки

При проведении поверки выполняют операции, указанные в таблице 1.

Обязательность проведения операций поверки определяется номенклатурой системы учета, в состав которой входит ИВК, и прикладными задачами, которые реализует ИВК в данной системе учета.

Таблица 1

	Номер	Проведени	е операции
Наименование операции	пункта рекомен-	при первичной	при перио- дической
	дации	поверке	поверке
1 Внешний осмотр	8.1	Да	Да
2 Опробование	8.2	Да	Да
3 Определение метрологических характеристик 3.1 Определение погрешности измерений входных электрических сигналов:			
- постоянного тока;	8.3.1, 9.1.1	Да	Да
– периода и частоты импульсного сигнала;	8.3.2, 9.1.2	Да	Да
- количества импульсов;	8.3.3, 9.1.3	Да	Да
- количества импульсов за интервал времени;	8.3.4, 9.1.4	Да	Да
 отношения количества импульсов за интервал времени. 	8.3.5, 9.1.5	Да	Да
3.2 Определение погрешности преобразования входных электрических сигналов в значения величин:			
– объема продукта (для систем учета с ПОР);	9.2.1	Да	Да
– массы продукта (для систем учета с ПОР и ПП);	9.2.2.1	Да	Да
– массы продукта (для систем учета с ПМР);	9.2.2.2	Да	Да
- коэффициента преобразования ПОР при поверке (КМХ);	9.2.3	Да	Да
- коэффициента преобразования ПМР при поверке (КМХ).	9.2.4	Да	Да
4 Проверка алгоритмов вычислений:			
– температуры, давления, плотности продукта, объ- емной доли воды в продукте;	8.4.2	Да	Нет
– объема и массы продукта;	8.4.3	Да	Нет
— коэффициента преобразования ПР при поверке (КМХ) по ПУ;	8.4.4	Да	Нет
– коэффициента преобразования ПР при поверке (КМХ) по ЭПР (КПР).	8.4.5	Да	Нет

4 Средства поверки

При проведении поверки применяют следующие основные и вспомогательные средства поверки:

- устройство для поверки вторичной измерительной аппаратуры узлов учета нефти и нефтепродуктов УПВА по ТУ 4221.011.11414740-2000;
- термометр метеорологический стеклянный по ГОСТ 112, диапазон измерений от 0 °C ло 100 °C;
 - психрометр аспирационный по ТУ 52-07-ГРПИ-405132-001-92.

Допускается применение других средств поверки с аналогичными или лучшими метрологическими характеристиками.

Средства поверки должны иметь действующие свидетельства о поверке или поверительные клейма

5 Требования безопасности

- 5.1 При проведении поверки соблюдают требования, определяемые:
- Межотраслевыми правилами по охране труда (правила безопасности) при эксплуатации электроустановок ПОТ Р М-016 РД 153-34.0-03.150-2000;
 - Правилами технической эксплуатации электроустановок потребителей;
- Требованиями безопасности при эксплуатации ИВК и применяемых средств поверки, приведенными в эксплуатационной документации.
- 5.2 К проведению поверки допускают лиц с техническим образованием не ниже среднего, аттестованных в качестве поверителя, имеющих группу по электробезопасности не ниже III, изучивших настоящую рекомендацию и эксплуатационную документацию на средства поверки и измерительно-вычислительный комплекс ИМЦ-03, прошедших инструктаж по технике безопасности.

6 Условия поверки

При проведении поверки соблюдают следующие условия:

 температура окружающего воздуха, °С 	от 15 до 25;
- атмосферное давление, кПа	от 84 до 106;
– относительная влажность воздуха, %	от 30 до 80;
 напряжение питания, В 	от 198 до 242;
- частота питания переменного тока, Гц	от 49,6 до 50.4;

- отсутствие вибрации, ударов и магнитного поля, кроме земного.

7 Подготовка к поверке

- 7.1 Перед проведением поверки выполняют следующие подготовительные работы:
- проверяют правильность монтажа ИВК в соответствии с документом «Комплекс измерительно-вычислительный ИМЦ-03. Альбом схем» из комплекта эксплуатационной документации на ИВК;
 - включают и прогревают средства поверки и ИВК не менее 30 минут.

7.2 При подготовке к проверке алгоритмов вычислений в ИВК вводят необходимые для вычислений данные.

Ввод данных выполняют руководствуясь документом «Комплекс измерительновычислительный ИМЦ-03. Руководство оператора» из комплекта эксплуатационной документации.

- 7.2.1 При подготовке к проверке алгоритмов вычислений температуры, давления, плотности продукта и объемной доли воды в продукте (для систем учета сырой нефти) в ИВК вводят следующие данные:
 - ГХ ПТ и ПД, установленных в ИЛ (для систем учета с ПОР);
 - ГХ ПТ и ПД, установленных в БИК;
 - ГХ ПТ и ПД, установленных на входе и выходе ПУ;
 - ГХ ПТ и ПД, установленных в ИЛ с ЭПР (КПР) (для систем учета с ЭПОР (КПОР));
 - ΓΧ ΠΠ;
 - ГХ влагомера.
- 7.2.2 При подготовке к проверке алгоритмов вычислений объема и массы продукта в ИВК дополнительно вводят следующие данные:
 - ΓΧ ΠΡ.
- 7.2.3 При подготовке к проверке алгоритмов вычислений коэффициента преобразования ПР при поверке (КМХ) по ПУ в ИВК дополнительно вводят следующие данные:
 - паспортные данные ПУ;
 - характеристики материала стенок ПУ;
- ГХ ПТ для измерений температуры инварового стержня КП (для систем учета с КП).
- 7.2.4 При подготовке к проверке алгоритмов вычислений коэффициента преобразования ПР при поверке (КМХ) по ЭПР (КПР) в ИВК дополнительно вводят следующие данные:
 - ГХ ЭПР (КПР).

8 Проведение поверки

8.1 Внешний осмотр

При внешнем осмотре устанавливают соответствие поверяемого ИВК следующим требованиям:

- комплектность ИВК соответствует эксплуатационной документации ИВК;
- надписи и обозначения на ИВК четкие и соответствуют эксплуатационной документации;
 - отсутствуют механические повреждения, препятствующие применению.

8.2 Опробование

При опробовании подключают имитатор сигналов первичных преобразователей (УПВА) и проверяют правильность прохождения сигналов в ИВК.

Подключения выполняют в соответствии со схемами, приведенными в приложении А. Изменяя сигналы имитатора, убеждаются в наличии их ввода и обработки, контролируя изменение значений параметров на дисплее ИВК.

8.3 Определение метрологических характеристик

8.3.1 Определение погрешности измерений постоянного тока проводят при наличии в системе учета преобразователей с токовыми выходами.

Определение погрешности измерений постоянного тока проводят для каждого токового входа ИВК при значениях тока 4, 12 и 20 мА (допускается задавать другие значения тока) в следующей последовательности:

- поочередно подключают токовый выход УПВА к токовым входам ИВК (см. рисунок А.1 приложения А);
 - поочередно задают на токовом выходе УПВА вышеуказанные значения тока;
 - проводят отсчет измеренных значений тока с дисплея ИВК;
- заносят полученные значения тока в таблицу 1.1 протокола поверки ИВК, форма которого приведена в приложении Б;
 - проводят обработку результатов измерений в соответствии с 9.1.1.
- 8.3.2 Определение погрешности измерений периода и частоты импульсного сигнала проводят при наличии в составе системы учета преобразователей с частотными выходами.

Определение погрешности измерений периода и частоты импульсного сигнала проводят для всех импульсных входов ИВК при значениях периода 100 и 100000 мкс (допускается задавать другие значения периода) в следующей последовательности:

- подключают УПВА к ИВК согласно рисунку А.2 приложения А;
- поочередно задают на частотном выходе УПВА вышеуказанные значения периода;
- проводят отсчет измеренных значений периода с дисплея ИВК;
- заносят полученные значения периода в таблицу 1.2 протокола поверки ИВК, форма которого приведена в приложении Б;
 - проводят обработку результатов измерений периода в соответствии с 9.1.2.
- 8.3.3 Определение погрешности измерений количества импульсов проводят при наличии в составе системы учета ПР с импульсными выходами.

Определение погрешности измерений количества импульсов проводят для всех импульсных входов ИВК в следующей последовательности:

- подключают УПВА к ИВК согласно рисунку А.3 приложения А;
- задают на выходе «N» УПВА количество импульсов не менее 100 000;
- задают на выходе «F4» УПВА значение частоты выходного сигнала 1000 Гц (допускается задавать другие значения частоты);
 - нажимают кнопку «Sa» УПВА;
- проводят отсчет значений количества импульсов с дисплея ИВК после погасания светодиода «N» УПВА;
- заносят полученные значения количества импульсов в таблицу 1.3 протокола поверки ИВК, форма которого приведена в приложении Б;
 - проводят не менее трех измерений;
 - проводят обработку результатов измерений в соответствии с 9.1.3.
- 8.3.4 Определение погрешности измерений количества импульсов за интервал времени проводят при наличии в составе системы учета ПР с импульсными выходами и ПУ.

Определение погрешности измерений количества импульсов за интервал времени проводят по любому импульсному входу ИВК в следующей последовательности:

- подключают УПВА к ИВК согласно рисунку А.4 приложения А;
- задают на выходе «N» УПВА количество импульсов не менее 1000;
- задают на выходе «F4» УПВА значение частоты выходного сигнала 1000 Гц (допускается задавать другие значения частоты);
 - начинают измерение в ИВК;
- нажимают кнопку «Sa» УПВА. При имитации двунаправленной ТПУ после срабатывания выхода «Sb» УПВА нажимают кнопку «Sb» .
- проводят отсчет измеренных значений количества импульсов за интервал времени с дисплея ИВК после окончания измерения;
- заносят полученные значения в таблицу 1.4 протокола поверки ИВК, форма которого приведена в приложении Б;
 - проводят не менее трех измерений для каждой пары входов детекторов ПУ ИВК;
 - проводят обработку результатов измерений в соответствии с 9.1.4.
- 8.3.5 Определение погрешности измерений отношения количества импульсов за интервал времени проводят при наличии в составе системы учета ПР с импульсными выходами и одного или нескольких ЭПР (КПР) с импульсным выходом.

Определение погрешности измерений отношения количества импульсов за интервал времени проводят по любым двум или более импульсным входам ИВК, в следующей последовательности:

- подключают УПВА к ИВК согласно рисунку А.5 или А.6 приложения А;
- задают на одном частотном выходе УПВА (имитация выходного сигнала рабочего ПР) значение частоты выходного сигнала 1000 Гц (допускается задавать другие значения частоты);
- задают на другом частотном выходе УПВА (имитация выходного сигнала ЭПР (КПР)) значение частоты выходного сигнала 1001 Гц (допускается задавать другие значения частоты);
- задают в ИВК время измерения или количество импульсов от ЭПР (КПР) за время измерения;
 - начинают измерение в ИВК;
- проводят отсчет измеренных значений количества импульсов с дисплея ИВК после окончания измерения;
- заносят полученные значения в таблицу 1.5 или 1.6 протокола поверки ИВК, форма которого приведена в приложении Б;
 - проводят не менее трех измерений;
 - проводят обработку результатов измерений в соответствии с 9.1.5.

8.4 Проверка алгоритмов вычислений

8.4.1 Проверку алгоритмов вычислений ИВК проводят в режиме имитации входных электрических сигналов: в расчетах вместо измеренных значений ИВК использует введенные вручную фиксированные значения входных электрических сигналов, соответствующие средним значениям параметров в системе учета в соответствии с таблицей 2.

Для имитации преобразователей с токовым выходом в ИВК задают значение входного тока I_{BX} , мА.

Для имитации преобразователей с частотным выходом в ИВК задаются количество импульсов за цикл измерения ΔN , имп, и длительность цикла измерения ΔT , с. Из этих значений ИВК вычисляет значения частоты $f_{\rm BX}$, Γ ц и периода входного сигнала $T_{\rm BX}$, мкс.

Фиксированные значения входных сигналов определяют по ГХ имитируемых преобразователей.

Таблица 2

	t _{ΠΡ} ,	t _{∏∏} ,	t _{ПУвх} ,	t _{ПУвых} ,	t _{ЭПР} ,	Р _{ПР} ,	Р _{ПП} ,	Р _{ПУвх} ,	Р _{ПУвых} ,	Р _{ЭПР} ,	ρпп ,
	°C	°C	°С	°С	°С	МПа	МПа	МПа	МПа	МПа	кг/м³
Į	t_{CP}	t _{CP} - 1	$t_{CP} + 1$	$t_{CP} + 2$	$t_{\rm CP} + 3$	P_{CP}	P _{CP} +0.1	P _{CP} -0.1	P _{CP} -0.2	P _{CP} -0.3	ρсР

Для всех ПР в ИВК устанавливают одинаковые коэффициенты преобразования (зависят от типа ПР). Допускается устанавливать разные коэффициенты преобразования ПР.

Расчетные значения проверяемых параметров вычисляют по формулам, приведенным в документе «Комплекс измерительно-вычислительный ИМЦ-03. Алгоритмы вычислений» из комплекта эксплуатационной документации.

- 8.4.2 Проверку алгоритмов вычислений температуры, давления, плотности продукта и объемной доли воды в продукте проводят в следующей последовательности:
 - переключают ИВК в режим имитации;
- вводят в ИВК значения $I_{\rm BX}$ для каждого токового входа, используемого для подключения преобразователей с токовым выходом;
- вводят в ИВК значения Δ N и Δ T для каждого импульсного входа, используемого для подключения преобразователей с частотным выходом;
 - проводят отсчет вычисленных значений с дисплея ИВК;
- заносят результаты вычислений в таблицы 1-5 протокола проверки алгоритмов вычислений, форма которого приведена в приложении B.
- 8.4.3 Проверку алгоритмов вычислений объема (для систем учета с ПОР) и массы продукта проводят в следующей последовательности:
- вводят в ИВК значение количества импульсов N (не менее 10000) для каждого импульсного входа, используемого для подключения ПР;
 - начинают счет импульсов в ИВК;
- проводят отсчет вычисленных значений объема и массы с дисплея ИВК после окончания измерения;
- заносят результаты вычислений в таблицу 6 или 7 протокола проверки алгоритмов вычислений, форма которого приведена в приложении В.
- 8.4.4 Проверку алгоритмов вычислений коэффициента преобразования ПР при поверке (КМХ) по ПУ проводят в следующей последовательности:
- удаляют в ИВК, если было ранее введено, количество импульсов N для каждого импульсного входа, используемого для подключения ПР;
- вводят в ИВК значения количества импульсов от ПР и время измерения (зависят от типа ПР);

- начинают измерение в ИВК;
- проводят отсчет вычисленного значения коэффициента преобразования ПР с дисплея ИВК после окончания измерения;
- заносят результаты вычислений в таблицу 8, 9, 11 или 12 протокола проверки алгоритмов вычислений, форма которого приведена в приложении В.
- 8.4.5 Проверку алгоритмов вычислений коэффициента преобразования ПР при поверке (КМХ) по ЭПР (КПР) проводят в следующей последовательности:
- удаляют в ИВК, если было ранее введено, количество импульсов N для каждого импульсного входа, используемого для подключения ПР;
- вводят в ИВК значения количества импульсов от ПР и ЭПР (КПР) и время измерения (зависят от типа ПР и ЭПР (КПР));
 - начинают измерение в ИВК;
- проводят отсчет вычисленного значения коэффициента преобразования ПР с дисплея ИВК после окончания измерения;
- заносят результаты вычислений в таблицу 10, 13 или 14 протокола проверки алгоритмов вычислений, форма которого приведена в приложении В.
- 8.4.6 Отклонение результатов вычислений ИВК от расчетных значений не должно превышать одной единицы младшего разряда.

9 Обработка результатов измерений

9.1 Определение погрешности измерений входных электрических сигналов

9.1.1 Определение погрешности измерений постоянного тока.

Абсолютную погрещность измерений постоянного тока по j-му токовому входу ИВК, при i-м измерении, Δ_{lii} , мA, вычисляют по формуле

$$\Delta_{\mathbf{l}ji} = \mathbf{I}_{ji} - \mathbf{I}_{\mathbf{J}\mathbf{l}i}, \tag{1}$$

где I_{ji} – измеренное значение тока по j-му токовому входу при i-м измерении, мA; $I_{Дi}$ – действительное значение тока при i-м измерении, мA.

Результаты вычислений заносят в таблицу 1.1 протокола поверки ИВК, форма которого приведена в приложении Б;

Абсолютная погрешность измерений постоянного тока по j-му токовому входу при i-м измерении не должна выходить за пределы допускаемой абсолютной погрешности измерений постоянного тока $\Delta_{\text{Iивк}}$, равные \pm 0,015 мA.

9.1.2 Определение погрешности измерений периода и частоты импульсного сигнала.

Относительную погрешность измерений периода импульсного сигнала по j-му импульсному входу при i-м измерении, δ_{Tji} ,%, вычисляют по формуле

$$\delta_{Tji} = \frac{T_{ji} - T_{IJi}}{T_{IJi}} \cdot 100, \qquad (2)$$

где T_{ji} — измеренное значение периода по j-му импульсному входу при i-м измерении, мкс;

 $T_{Лi}$ – действительное значение периода при i-м измерении, мкс.

Результаты вычислений заносят в таблицу 1.2 протокола поверки ИВК, форма которого приведена в приложении Б.

Относительную погрешность измерений частоты импульсного сигнала по j-му импульсному входу при i-м измерении, δ_{fji} , %, принимают равной относительной погрешности измерений периода импульсного сигнала по j-му импульсному входу при i-м измерении δ_{Tij} .

Относительная погрешность измерений периода импульсного сигнала по j-му импульсному входу при i-м измерении не должна выходить за пределы допускаемой относительной погрешности измерений периода импульсного сигнала, $\delta_{\text{тивк}}$, равные \pm 0,002 %.

Относительная погрешность измерений частоты импульсного сигнала по j-му импульсному входу при i-м измерении не должна выходить за пределы допускаемой относительной погрешности измерений частоты импульсного сигнала, δ_{furk} , равные \pm 0,002 %.

9.1.3 Определение погрешности измерений количества импульсов.

Относительную погрешность измерений количества импульсов по j-му импульсному входу при i-м измерении, δ_{Nii} , %, вычисляют по формуле

$$\delta_{Nji} = \frac{N_{ji} - N_{Jli}}{N_{ni}} \cdot 100, \qquad (3)$$

где N_{ji} – измеренное значение количества импульсов по j-му импульсному входу при i-м измерении, имп;

 $N_{\text{Лi}}$ – действительное значение количества импульсов при i-м измерении, имп.

Результаты вычислений заносят в таблицу 1.3 протокола поверки ИВК, форма которого приведена в приложении Б.

Относительная погрешность измерений количества импульсов по j-му импульсному входу при i-м измерении не должна выходить за пределы допускаемой относительной погрешности измерений количества импульсов, $\delta_{\text{Nивк}}$, равные ± 0.025 %.

9.1.4 Определение погрешности измерений количества импульсов за интервал времени.

Относительную погрешность измерений количества импульсов за интервал времени при i-м измерении, δ_{NTi} , %, вычисляют по формулам

$$\delta_{\text{NTi}} = \frac{N_i - N_{\pi i}}{N_{\pi i}} \cdot 100, \tag{4}$$

где N_i – измеренное значение количества импульсов за интервал времени при i-м измерении, имп;

 $N_{II\,i}$ – действительное количество импульсов за интервал времени, имп.

Результаты вычислений заносят в таблицу 1.4 протокола поверки ИВК, форма которого приведена в приложении Б.

Относительная погрешность измерений количества импульсов за интервал времени не должна выходить за пределы допускаемой относительной погрешности измерений количества импульсов за интервал времени, $\delta_{\text{NТивк}}$, равные $\pm~0.01~\%$.

9.1.5 Определение погрешности измерений отношения количества импульсов за интервал времени.

Относительную погрешность измерений отношения количества импульсов за интервал времени при і-м измерении, δ_{RNTi} ,%, при одном ЭПР (КПР) вычисляют по формуле (5), при нескольких ЭПР (КПР) – по формуле (6).

$$\delta_{\text{RNTi}} = \frac{\left(\frac{N_{\text{Pi}}}{N_{\text{9i}}} - \frac{f_{\text{P}}}{f_{\text{9}}}\right)}{\left(\frac{f_{\text{P}}}{f_{\text{9}}}\right)} \cdot 100, \tag{5}$$

$$\delta_{\text{RNTi}} = \frac{\left(\frac{N_{\text{Pi}}}{\sum_{k=1}^{n} N_{\text{3ki}}} - \frac{f_{\text{P}}}{n \cdot f_{\text{9}}}\right)}{\left(\frac{f_{\text{P}}}{n \cdot f_{\text{3}}}\right)} \cdot 100, \tag{6}$$

где N_{Pi} – измеренное значение количества импульсов по импульсному входу для подключения рабочего ПР при i-м измерении, имп;

N_{Эі} – измеренное значение количества импульсов по импульсному входу для подключения ЭПР (КПР) при i-м измерении, имп;

N_{Экі} — измеренное значение количества импульсов по импульсному входу для k-го ЭПР (КПР) при i-м измерении, имп;

f_P – установленное значение частоты на импульсном входе для подключения рабочего ПР. Гп:

 $f_{\mathfrak{I}}$ – установленное значение частоты на импульсном входе для подключения ЭПР, Γ и;

n - количество ЭПР (КПР).

Результаты вычислений заносят в таблицу 1.5 или 1.6 протокола поверки ИВК, форма которого приведена в приложении Б.

Относительная погрешность измерений отношения количества импульсов за интервал времени при i-м измерении не должна выходить за пределы допускаемой относительной погрешности измерений отношения количества импульсов за интервал времени, δ_{RNTubk} , равные \pm 0,01 %.

9.2 Определение погрешности преобразования входных электрических сигналов в значения величин

9.2.1 Определение погрешности преобразования входных сигналов в значение объема продукта.

Для систем учета с ПОР относительную погрешность преобразования входных сигналов в значение объема продукта δ_V , %, вычисляют по формуле

$$\delta_{V} = \delta_{N_{HRK}}, \tag{7}$$

где $\delta_{\text{Nивк}}$ – пределы допускаемой относительной погрешности измерений количества импульсов (принимают равными \pm 0,025 %), %.

Результаты вычислений заносят в таблицу 2.6 протокола поверки ИВК, форма которого приведена в приложении Б.

Относительная погрешность преобразования входных сигналов в значение объема продукта не должна выходить за пределы допускаемой относительной погрешности преобразования входных сигналов в значение объема δ_{VIBK} , равные $\pm~0.025~\%$.

- 9.2.2 Определение погрешности преобразования входных сигналов в значение массы продукта.
- 9.2.2.1 Для систем учета с ПОР и ПП относительную погрешность преобразования входных сигналов в значение массы продукта, $\delta_{\rm M}$, %, вычисляют по формулам

$$\delta_{\rm M} = \pm 1.1 \cdot \sqrt{\delta_{\rm V_{\rm HBK}}^2 + \delta_{\rm p}^2 + \delta_{\rm t}^2 + \delta_{\rm p}^2}, \tag{8}$$

$$\delta_{\rho} = \frac{\Delta \rho}{\rho_{\text{IIIT}_{min}}} \cdot 100 \,, \tag{9}$$

$$\delta_{t} = \pm 100 \cdot \beta_{\text{max}} \cdot \sqrt{\Delta_{\text{tm}}^{2} + \Delta_{\text{tmp}}^{2}}, \qquad (10)$$

$$\delta_{\rm p} = \pm 100 \cdot \gamma_{\rm max} \cdot \sqrt{\Delta_{\rm Pm}^2 + \Delta_{\rm Pm}^2} \,, \tag{11}$$

где $\delta_{\text{Vивк}}$ – пределы допускаемой относительной погрешности преобразования входных сигналов в значение объема продукта (принимают равными \pm 0,025 %), %;

 $\Delta \rho$ – абсолютная погрешность преобразования входных сигналов в значение плотности продукта (для ПП с частотным выходом вычисляют по формуле (29), для ПП с токовым выходом – по формуле (28)), кг/м³;

 $\rho_{\Pi\Pi min}$ – минимальное возможное значение плотности продукта, кг/м³;

 β_{max} – максимальное возможное значение коэффициента объемного расширения продукта (определяют по таблице Γ .1 приложения Γ), ${}^{\text{o}}\text{C}^{\text{-1}}$;

 Δ_{tmn} , Δ_{tmp} – абсолютные погрешности преобразования входных сигналов в значение температуры продукта при измерениях плотности продукта ПП и объема продукта ПОР соответственно (вычисляют по формуле (28)), °C;

γ_{max} — максимальное возможное значение коэффициента сжимаемости продукта (определяют по таблице Γ.2 приложения Γ), МПа⁻¹;

 Δ_{Pnn} , Δ_{Pnp} – абсолютные погрешности преобразования входных сигналов в значение давления продукта при измерениях плотности продукта ПП и объема продукта ПОР соответственно (вычисляют по формуле (28)), МПа.

Результаты вычислений заносят в таблицу 2.6 протокола поверки ИВК, форма которого приведена в приложении Б.

9.2.2.2 Для систем учета с ПМР относительную погрешность преобразования количества импульсов в значение массы продукта, $\delta_{\rm M}$, $\delta_{\rm M}$, вычисляют по формуле

$$\delta_{\mathrm{M}} = \delta_{\mathrm{Nibk}}, \qquad (12)$$

где $\delta_{\text{Nnвк}}$ – пределы допускаемой относительной погрешности измерений количества импульсов (принимают равными \pm 0,025 %), %.

Результаты вычислений заносят в таблицу 2.6 протокола поверки ИВК, форма которого приведена в приложении Б.

- 9.2.2.3 Относительная погрешность преобразования входных сигналов в значение массы продукта не должна выходить за пределы допускаемой относительной погрешности преобразования входных сигналов в значение массы продукта, $\delta_{\text{Мивк}}$, равные \pm 0,05 %.
- 9.2.3 Определение погрешности преобразования входных сигналов в значение коэффициента преобразования ПОР при поверке (КМХ).
- 9.2.3.1 При поверке (КМХ) ПОР по ПУ относительную погрешность преобразования входных сигналов в значение коэффициента преобразования ПОР, δ_{Kv} , %, вычисляют по формулам

$$\delta_{Kv} = \pm 1.1 \cdot \sqrt{\delta_{NT_{MBK}}^2 + \delta_1^2 + \delta_p^2},$$
 (13)

$$\delta_{t} = \pm 100 \cdot \beta_{\text{max}} \cdot \sqrt{\Delta_{\text{tny}}^{2} + \Delta_{\text{tnp}}^{2}}, \qquad (14)$$

$$\delta_{\rm P} = \pm 100 \cdot \gamma_{\rm max} \cdot \sqrt{\Delta_{\rm Pny}^2 + \Delta_{\rm Pnp}^2} \,, \tag{15}$$

где $\delta_{\text{NТивк}}$ – пределы допускаемой относительной погрешности измерений количества импульсов за интервал времени (принимают равными \pm 0,01 %), %;

 β_{max} – максимальное возможное значение коэффициента объемного расширения продукта, (определяют по таблице Γ .1 приложения Γ), ${}^{o}C^{-1}$;

 Δ_{tny} , Δ_{tnp} — абсолютная погрешность преобразования входных сигналов в значение температуры продукта в ПУ и ПОР соответственно (вычисляют по формуле (28)), °С;

 γ_{max} — максимальное возможное значение коэффициента сжимаемости продукта (определяют по таблице Г.2 приложения Г), МПа⁻¹;

 Δ_{Pny} , Δ_{Pnp} — абсолютные погрешности преобразования входных сигналов в значение давления продукта в ПУ и ПОР соответственно (вычисляют по формуле (28)), МПа.

Результаты вычислений заносят в таблицу 2.6 протокола поверки ИВК, форма которого приведена в приложении Б.

9.2.3.2 При поверке (КМХ) ПОР по ЭПОР (КПОР) относительную погрешность преобразования входных сигналов в значение коэффициента преобразования ПОР, δ_{Kv} , %, вычисляют по формулам

$$\delta_{\mathrm{Kv}} = \pm 1.1 \cdot \sqrt{\delta_{\mathrm{RNT_{BBK}}}^2 + \delta_{\mathrm{t}}^2 + \delta_{\mathrm{p}}^2} , \qquad (16)$$

$$\delta_{t} = \pm 100 \cdot \beta_{\text{max}} \cdot \sqrt{\Delta_{t \ni \text{np}}^{2} + \Delta_{\text{tnp}}^{2}}, \qquad (17)$$

$$\delta_{\rm p} = \pm 100 \cdot \gamma_{\rm max} \cdot \sqrt{\Delta_{\rm P9np}^2 + \Delta_{\rm Pnp}^2} \; , \tag{18} \label{eq:deltappen}$$

где $\delta_{\text{RNTивк}}$ – пределы допускаемой относительной погрешности измерений отношения количества импульсов за интервал времени (принимают равными ± 0.01 %), %;

 β_{max} — максимальное возможное значение коэффициента объемного расширения продукта, (определяют по таблице Γ .1 приложения Γ), ${}^{\circ}C^{-1}$;

 $\Delta_{\text{tэпр}}$, $\Delta_{\text{tпр}}$ – абсолютная погрешность преобразования входных сигналов в значение температуры продукта в ЭПОР (КПОР) и ПОР соответственно (вычисляют по формуле (28)), °C;

- γ_{max} максимальное возможное значение коэффициента сжимаемости продукта (определяют по таблице Γ .2 приложения Γ), МПа⁻¹;
- $\Delta_{\text{Рэпр}}$, $\Delta_{\text{Рпр}}$ абсолютные погрешности преобразования входных сигналов в значение давления продукта в ЭПОР (КПОР) и ПОР соответственно (вычисляют по формуле (28)), МПа.

Результаты вычислений заносят в таблицу 2.6 протокола поверки ИВК, форма которого приведена в приложении Б.

- 9.2.3.3 Относительная погрешность преобразования входных сигналов в значение коэффициента преобразования ПОР при поверке (КМХ) не должна выходить за пределы допускаемой относительной погрешности преобразования входных сигналов в значение коэффициента преобразования ПОР, δ_{Kv} ивк, равные \pm 0,025 %.
- 9.2.4 Определение погрешности преобразования входных сигналов в значение коэффициента преобразования ПМР при поверке (КМХ).
- 9.2.4.1 При поверке (КМХ) ПМР по ПУ и ПП относительную погрешность преобразования входных сигналов в значение коэффициента преобразования ПМР, δ_{KM} , %, вычисляют по формулам

$$\delta_{KM} = \pm 1.1 \cdot \sqrt{\delta_{NTHBK}^2 + \delta_p^2 + \delta_t^2 + \delta_p^2}, \qquad (19)$$

$$\delta_{\rho} = \frac{\Delta \rho}{\rho_{\Pi\Pi \, \text{min}}} \cdot 100 \,, \tag{20}$$

$$\delta_{\rm t} = \pm 100 \cdot \beta_{\rm max} \cdot \sqrt{\Delta_{\rm tnn}^2 + \Delta_{\rm tny}^2} \,, \tag{21}$$

$$\delta_{P} = \pm 100 \cdot \gamma_{\text{max}} \cdot \sqrt{\Delta_{\text{Pm}}^2 + \Delta_{\text{Pny}}^2} , \qquad (22)$$

где $\delta_{\text{NТивк}}$ – пределы допускаемой относительной погрешности измерений количества импульсов за интервал времени (принимают равными \pm 0,01 %), %;

 $\Delta \rho$ — абсолютная погрешность преобразования входных сигналов в значение плотности продукта (для ПП с частотным выходом вычисляют по формуле (29), для ПП с токовым выходом — по формуле (28), кг/м³;

 $\rho_{\Pi\Pi min}$ — минимальное возможное значение плотности продукта, кг/м³;

 β_{max} — максимальное возможное значение коэффициента объемного расширения продукта (определяют по таблице Γ .1 приложения Γ), ${}^{\circ}C^{-1}$;

 Δ_{tmn} , Δ_{tmy} – абсолютные погрешности преобразования входных сигналов в значение температуры продукта при измерении плотности продукта ПП и объема продукта ПУ соответственно (вычисляют по формуле (28)), °C;

 γ_{max} — максимальное возможное значение коэффициента сжимаемости продукта (определяют по таблице $\dot{\Gamma}$.2 приложения Γ), МПа⁻¹;

 $\Delta_{\text{Рпи}}$, $\Delta_{\text{Рпу}}$ – абсолютные погрешности преобразования входных сигналов в значение давления продукта при измерении плотности продукта ПП и объема продукта ПУ соответственно (вычисляют по формуле (28)), МПа.

Результаты вычислений заносят в таблицу 2.6 протокола поверки ИВК, форма которого приведена в приложении Б.

9.2.4.2 При поверке (КМХ) ПМР по ЭПМР (КПМР) относительную погрешность преобразования входных сигналов в значение коэффициента преобразования ПМР, δ_{KM} , %, вычисляют по формуле

$$\delta_{KM} = \delta_{RNTurk}, \qquad (23)$$

где $\delta_{\text{RNTивк}}$ — пределы допускаемой относительной погрешности измерений отношения количества импульсов за интервал времени (принимают равными ± 0.01 %), %.

Результаты вычислений заносят в таблицу 2.6 протокола поверки ИВК, форма которого приведена в приложении Б.

9.2.4.3 При поверке (КМХ) ПМР по ЭПОР (КПОР) и ПП относительную погрешность преобразования входных сигналов в значение коэффициента преобразования ПМР, δ_{Km} , %, вычисляют по формулам

$$\delta_{K_{M}} = \pm 1.1 \cdot \sqrt{\delta_{RNT_{HBK}}^{2} + \delta_{\rho}^{2} + \delta_{t}^{2} + \delta_{p}^{2}}, \qquad (24)$$

$$\delta_{\rho} = \frac{\Delta \rho}{\rho_{\Pi\Pi \min}} \cdot 100 \,, \tag{25}$$

$$\delta_{t} = \pm 100 \cdot \beta_{\text{max}} \cdot \sqrt{\Delta_{\text{tm}}^{2} + \Delta_{\text{tsmp}}^{2}}, \qquad (26)$$

$$\delta_{\rm p} = \pm 100 \cdot \gamma_{\rm max} \cdot \sqrt{\Delta_{\rm Pm}^2 + \Delta_{\rm Pap}^2}, \tag{27}$$

где $\delta_{\text{RNTивк}}$ – пределы допускаемой относительной погрешности измерений отношения количества импульсов за интервал времени (принимают равными ± 0.01 %), %;

 $\Delta \rho$ – абсолютная погрешность преобразования входных сигналов в значение плотности продукта (для ПП с частотным выходом вычисляют по формуле (29), для ПП с токовым выходом – по формуле (28)), кг/м³;

 $ho_{\Pi\Pi min}$ — минимальное возможное значение плотности продукта, кг/м³;

 β_{max} – максимальное возможное значение коэффициента объемного расширения продукта (определяют по таблице Γ .1 приложения Γ), ${}^{\text{o}}\text{C}^{-1}$;

 Δ_{tnn} , Δ_{tnn} – абсолютные погрешности преобразования входных сигналов в значение температуры продукта при измерении плотности продукта ПП и объема продукта ЭПОР (КПОР) соответственно (вычисляют по формуле (28)), °C;

 γ_{max} — максимальное возможное значение коэффициента сжимаемости продукта (определяют по таблице Γ .2 приложения Γ), М Π а $^{-1}$;

 $\Delta_{\text{Рпп}}$, $\Delta_{\text{Рэпр}}$ – абсолютные погрешности преобразования входных сигналов в значение давления продукта при измерении плотности продукта ПП и объема продукта ЭПОР (КПОР) соответственно (вычисляют по формуле (28)), МПа.

Результаты вычислений заносят в таблицу 2.6 протокола поверки ИВК, форма которого приведена в приложении Б.

9.2.4.4 Относительная погрешность преобразования входных сигналов в значение коэффициента преобразования ПМР при поверке (КМХ) не должна выходить за пределы допускаемой относительной погрешности преобразования входных сигналов в значение коэффициента преобразования ПМР, $\delta_{\text{Км ивк}}$, равные \pm 0,04 %.

9.2.5 Абсолютную погрешность преобразования тока в значение параметра X, Δ_{X} , вычисляют по формуле

$$\Delta_{X} = \frac{X_{\text{max}} - X_{\text{min}}}{I_{\text{max}} - I_{\text{min}}} \cdot \Delta_{I_{\text{MBK}}}, \qquad (28)$$

где X_{max} , X_{min} – наибольшее и наименьшее значения диапазона измерений преобразователя параметра X в ток;

 I_{max} , I_{min} – наибольшее и наименьшее значения диапазона выходного тока преобразователя параметра X в ток, мA;

 $\Delta_{\text{Інвк}}$ – пределы допускаемой абсолютной погрешности измерений постоянного тока (принимают равными \pm 0,015 мA), мА.

9.2.6 Абсолютную погрешность преобразования периода входного сигнала в значение параметра X, Δ_X , вычисляют по формуле

$$\Delta_{X} = \frac{X_{\text{max}} - X_{\text{min}}}{T_{\text{max}} - T_{\text{min}}} \cdot \frac{\delta_{T_{\text{MBK}}}}{100} \cdot T_{\text{max}}, \tag{29}$$

где X_{max} , X_{min} — наибольшее и наименьшее значения диапазона измерений преобразователя параметра X в период выходного сигнала;

 T_{max} , T_{min} — наибольшее и наименьшее значения диапазона периода выходного сигнала преобразователя параметра X в период выходного сигнала, мкс;

 $\delta_{\text{Тнвк}}$ — пределы допускаемой относительной погрешности измерений периода импульсного сигнала (принимают равными $\pm 0,002$ %), %.

10 Оформление результатов поверки

- 10.1 Результаты поверки оформляют протоколом, рекомендуемая форма которого приведена в приложении Б.
- 10.2 Результаты проверки алгоритмов вычислений оформляют протоколом, рекомендуемая форма которого приведена в приложении В.
- 10.3 При положительных результатах поверки оформляют свидетельство о поверке ИВК, форма которого приведена в ПР 50.2.006, и на пломбу, устанавливаемую на каркас промышленного компьютера, ставят поверительное клеймо в соответствии с ПР 50.2.007.
- 10.4 При отрицательных результатах поверки ИВК к эксплуатации не допускают, поверительное клеймо гасят, свидетельство о поверке аннулируют и выдают извещение о непригодности с указанием причин, согласно ПР 50.2.006.

Приложение А Схемы подключения УПВА к ИВК

Рисунок А.1 - Схема подключения для определения погрешности измерений постоянного тока

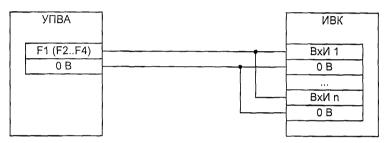


Рисунок A.2 - Схема подключения для определения погрешности измерений периода и частоты импульсного сигнала

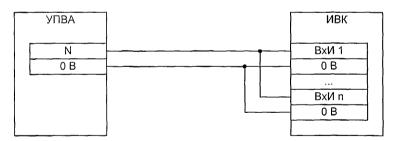


Рисунок А.3 - Схема подключения для определения погрешности измерений количества импульсов

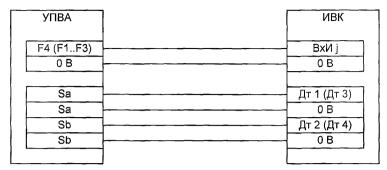


Рисунок А.4 - Схема подключения для определения погрешности измерений количества импульсов за интервал времени

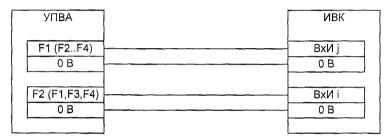


Рисунок А.5 - Схема подключения для определения погрешности измерений отношения количества импульсов за интервал времени (один ЭПР (КПР))

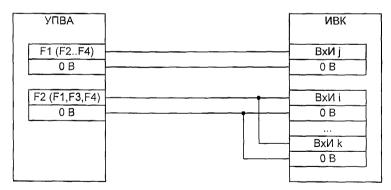


Рисунок А.6 - Схема подключения для определения погрешности измерений отношения количества импульсов за интервал времени (несколько ЭПР (КПР))

Приложение Б Форма протокола поверки ИВК

ПРОТОКОЛ № ___ поверки ИВК ИМЦ-03

Заводской номер	Дата выпуска
Принадлежит	
Место проведения поверки	
Средство поверки: Тип	Зав.№

1 Определение погрешности измерений входных электрических сигналов

Таблица 1.1 - Результаты определения погрешности измерений постоянного тока ($\Delta_{\text{IMBK}} = \pm 0{,}015 \text{ мA}$)

Вход	I _{Ді,} мА	I _{ji,} мА	$\Delta_{ m Iji,}$ мА
BxT 1			
		•••	•••
BxT n			

Таблица 1.2 - Результаты определения погрешности измерений периода и частоты импульсного сигнала ($\delta_{\text{Тивк}} = \pm 0{,}002$ %, $\delta_{\text{firsk}} = \pm 0{,}002$ %)

Вход	Т _{Ді,} мкс	Т _{јі} , мкс	$\delta_{Tji,} \\ \%$	$\begin{matrix} \delta_{fji,} \\ \% \end{matrix}$
ВхИ 1				
	•••		•••	•••
ВхИ п				

Таблица 1.3 - Результаты определения погрешности измерений количества импульсов ($\delta_{\text{Nijbk}} = \pm 0{,}025$ %)

Вход	f, Гц	Nд имп.	N _{ji,} имп.	δ _{Nji} %
ВхИ 1				
				• • •
ВхИ п				

Таблица 1.4 - Результаты определения погрешности измерений количества импульсов за интервал времени ($\delta_{\text{NTивк}} = \pm 0.01$ %)

Nд,	N _i ,	$\delta_{ m NTi}$,
имп.	имп.	%
	Входы Д	т 1 и Дт 2
	}	
	Вуоль П	T 3 H Tr 4
	Блоды д	ТЭИДГЧ
	l .	имп. имп.

Таблица 1.5 - Результаты определения погрешности измерений отношения количества импульсов за интервал времени (для одного ЭПР (КПР)) ($\delta_{\text{RNTивк}} = \pm 0.01 \%$)

	1 1		// \ TE-1110K	
f _Э , Гц	f _P , Гц	N _{Pi} , имп	N _{Эі} , имп	δ _{RNTi} , %

Таблица 1.6 - Результаты определения погрешности измерений отношения количества импульсов за интервал времени (для нескольких ЭПР (КПР)) ($\delta_{\text{RNTивк}} = \pm 0{,}01$ %)

f _P , Гц	f _Э , Гц	N _{Pi} , имп	N _{Э1i} , имп		N _{Эni} , имп	δ _{RNTi} , %
				•••		
				•••		

2 Определение погрешности преобразования входных электрических сигналов в значения величин.

Таблица 2.1 - Исходные данные

$\Delta_{ ext{Iивк}},$ м A	δ _{Тивк} ,	δ _{Νивк} ,	δ _{NТивк} ,	δ_{RNThbk} ,	δ _{Vивк} ,	ρ _{ΠΠmin} , кг/м ³	β _{max} , 1/ ^O C	γ _{max} , 1/ΜΠα
0,015	0,002	0,025	0,01	0,01	0,025			

Таблица 2.2 - Исходные данные ПТ

Параметр	I _{min} , мА	I _{max} , мА	t _{min} , OC	t _{max} , OC
$t_{\Pi P}$				
t _{III}				
$t_{\Pi \mathbf{y}}$				
t _{ЭПР}				

Таблица 2.3 - Исходные данные ПД

Параметр	I _{min} , мА	I _{max} , мА	P _{min} , МПа	P _{max} , МПа
$P_{\Pi P}$				
$P_{\Pi\Pi}$				
$P_{\Pi Y}$				
РЭПР				

Таблица 2.4 - Исходные данные ПП с частотным выходом

Параметр	T _{min} ,	T _{max} , MKC	Р _{тіп} , КГ/М ³	ρ _{max} , кг/м³
Рпп			1	

Таблица 2.5 - Исходные данные ПП с токовым выходом

Параметр	I _{min} ,	I _{max} ,	ρ _{min} ,	ρ _{max} ,
	MA	мА	κΓ/Μ ³	кг/м ³
Рпп				

Таблица 2.6 - Результаты определения погрешности преобразования входных электрических сигналов в значения величин

Название	Значение	Предел
Относительная погрешность преобразования входных сигналов в значение объема продукта (ПОР), δ_V , %		0,025
Относительная погрешность преобразования входных сигналов в значение массы продукта (ПОР и ПП), δ_M , %		0,05
Относительная погрешность преобразования входных сигналов в значение массы продукта (ПМР), δ_M , %		0,05
Относительная погрешность преобразования входных сигналов в значение коэффициента преобразования ПОР при поверке (КМХ) по ПУ, δ_{Kv} , %		0,025
Относительная погрешность преобразования входных сигналов в значение коэффициента преобразования ПОР при поверке (КМХ) по ЭПОР (КПОР), δ_{Kv} , %		0,025
Относительная погрешность преобразования входных сигналов в значение коэффициента преобразования ПМР при поверке (КМХ) по ПУ и ПП, δ_{KM} , %		0,04
Относительная погрешность преобразования входных сигналов в значение коэффициента преобразования ПМР при поверке (КМХ) по ЭПОР (КПОР) и ПП, δ_{KM} , %		0,04
Относительная погрешность преобразования входных сигналов в значение коэффициента преобразования ПМР при поверке (КМХ) по ЭПМР (КПМР), δ_{KM} , %		0,04

Заключение: ИВК ИМЦ-03 к ,	дальнейшей эксплуатации			
		пригоден, н	е пригоден	
Лицо, проводившее поверку	подпись	И.О. Фамилия		
Дата проведения поверки	«»		20 r.	

Приложение В Форма протокола проверки алгоритмов вычислений ИВК

ПРОТОКОЛ № ___ проверки алгоритмов вычислений ИВК ИМЦ-03

Заводской номер _____ Дата выпуска _____

П	ринадлежит _					
M	есто проведен	ия проверки				
Таблила 1 -	Проверка алго	оритма вычис	пений темпе	ратуры (ПТ с	TOKOBLIM BLIVO	лом)
Пара-			nin, t _{ma}		t (pacy),	t (ИВК), OC
t _{ПP}						
t∏∏						
t _{ITY BX}						
tпу _{вых}						
t _{CT}						
tэпР						
Пара- метр	Проверка алго І _{тіп} , мА	I _{max} , P _r	лении давлен _{min} , Р _{та} Па МІ	ax, I _{BX} ,	овым выходом Р _(расч) , МПа	Р _(ИВК) , МПа
$P_{\Pi P}$						
$P_{\Pi\Pi}$						
Рпу вх						_
РПУ вых						
РЭПР						
Таблица 3 - выходом)	- Проверка ал	горитма вычі	ислений плот	гности продуг	кта рпп (ПП с	с частотным
K0	K1	K2	K18	K19	K20A	K20B
Продолжен	ие таблицы 3					
K21A	K21B	ΔN, имп	ΔT, c	Т _{ВХ} ,	ρ _{ПП (расч)} , кг/м ³	ρ _{ПП} (ИВК), кг/м ³

Таблица 4 - Проверка алгоритма вычислений плотности продукта, $\rho_{\Pi\Pi}$ (ПП с токовым выходом)

I _{min} ,	I _{max} ,	ρ _{min} ,	ρ _{max} ,	I _{ВХ} ,	РПП (расч) ,	Рпп (ивк) ,
мА	мА	κΓ/м ³	κΓ/м ³	мА	КГ/М ³	кг/м ³

Таблица 5 - Проверка алгоритма вычислений объемной доли воды в продукте, ϕ_B , (влагомер с токовым выходом)

I _{min} , мА	I _{max} , мА	ФВтіп, %	Ф _{Втах} ,	I _{ВХ} , мА	Фв (расч), %	Фв (ивк), %

Таблица 6 - Проверка алгоритма вычислений объема и массы продукта (ПОР)

Кол-во ПР	N, имп	К, имп/м ³	V _{БИЛ (расч)} ,	V _{БИЛ (ИВК)} ,	М _{БИЛ (расч)} , т	М _{БИЛ (ИВК)} , т

Таблица 7 - Проверка алгоритма вычислений массы продукта (ПМР)

Кол-во ПР	N,	К,	М _{БИЛ (расч)} ,	М _{БИЛ (ИВК)} ,
	имп	им п/т	Т	Т

Таблица 8 - Проверка алгоритма вычислений коэффициента преобразования ПОР при поверке (KMX) по ТПУ

V _O ,	D,	S,	Е,	α _t ,	N,	К _(расч) ,	К _(ИВК) ,
м ³	mm		МПа	1/°C	имп	имп/м ³	имп/м ³

Таблица 9 - Проверка алгоритма вычислений коэффициента преобразования ПОР при поверке (КМХ) по КП

V _O ,	D,	S,	Е,	α _{K1} ,	N,	К _(расч) ,	К _(ИВК) ,
м ³	mm	mm	МПа	1/°C	имп	имп/м ³	имп/м ³

Таблица 10 - Проверка алгоритма вычислений коэффициента преобразования ΠOP при поверке (KMX) по Э ΠOP (К ΠOP)

N _{ЭПР} ,	К _{ЭПР} ,	N,	K _(расч) ,	К _(ИВК) ,
имп	имп/м ³	имп	имп/м ³	имп/м ³

Таблица 11 - Проверка алгоритма вычислений коэффициента преобразования ПМР при поверке (КМХ) по ТПУ и ПП

V _O ,	D,	S,	Е,	α _t ,	N,	К _(расч) ,	К _(ИВК) ,
	мм	mm	МПа	1/°C	имп	имп/т	имп/т

Таблица 12 - Проверка алгоритма вычислений коэффициента преобразования ПМР при поверке (КМХ) по КП и ПП

V _O ,	D,	S,	Е,	α _{K1} ,	N,	K _(расч) ,	К _(ИВК) ,
м ³	mm	mm	МПа	1/°C	имп	имп/т	имп/т

Таблица 13 - Проверка алгоритма вычислений коэффициента преобразования ПМР при поверке (КМХ) по ЭПОР (КПОР) и ПП

N _{ЭПР} ,	К _{ЭПР} ,	N,	К _(расч) ,	К _(ИВК) ,
имп	имп/м³	имп	имп/т	имп/т

Таблица 14 - Проверка алгоритма вычислений коэффициента преобразования ПМР при поверке (КМХ) по ЭПМР (КПМР)

N _{ЭПР} ,	К _{ЭПР} ,	N,	К _(расч) ,	К _(ИВК) ,
имп	имп/т	имп	имп/т	имп/т

лицо, проводившее проверку					_
		подпись	И.О. Фамилия		
Дата проведения проверки	«			_20_	_ г.

Приложение Г Справочные данные

Таблица $\Gamma.1$ - Коэффициенты объемного расширения продукта β

ρ, κ г/ м ³	β, 1/°C	ρ, κγ/m³	β, 1/°C
690,0-699,9	0,00130	850,0-859,9	0,00081
700,0-709,9	0,00126	860,0-869,9	0,00079
710,0-719,9	0,00123	870,0-879,9	0,00076
720,0-729,9	0,00119	880,0-889,9	0,00074
730,0-739,9	0,00116	890,0-899,9	0,00072
740,0-749,9	0,00113	900,0-909,9	0,00070
750,0-759,9	0,00109	910,0-919,9	0,00067
760,0-769,9	0,00106	920,0-929,9	0,00065
770,0-779,9	0,00103	930,0-939,9	0,00063
780,0-789,9	0,00100	940,0-949,9	0,00061
790,0-799,9	0,00097	950,0-959,9	0,00059
800,0-809,9	0,00094	960,0-969,9	0,00057
810,0-819,9	0,00092	970,0-979,9	0,00055
820,0-829,9	0,00089	980,0-989,9	0,00053
830,0-839,9	0,00086	990,0-999,9	0,00052
840,0-849,9	0,00084	-	-

Таблица Г.2 - Коэффициенты сжимаемости продукта у

11	1 1 2
Наименование продукта	γ, 1/МПа
Нефть	1.2×10^{-3}
Бензин	1,0 ×10 ⁻³
Керосин	0.7×10^{-3}
Дизельное топливо	0.65×10^{-3}

Таблица $\Gamma.3$ - Коэффициенты линейного расширения α_t и модули упругости материала E стенок ТПУ

Материал	α _t , 1/°C	Е, МПа
Сталь углеродистая	11,2 × 10 ⁻⁶	$2,1 \times 10^5$
Сталь легированная	11,0 × 10 ⁻⁶	$2,0 \times 10^5$

Примечание: Если значения α_t и Е приведены в паспорте ТПУ, то для расчетов используют паспортные значения.

Таблица Г.4 - Квадратичные коэффициенты расширения α_{K1} и модули упругости материала E стенок КП

Материал	α _{K1} , 1/°C	Е, МПа
Сталь углеродистая	2,23× 10 ⁻⁵	$2,068 \times 10^5$
Сталь нержавеющая 17-4	2,36× 10 ⁻⁵	1,965× 10 ⁵
Сталь нержавеющая 304 литая	3,19× 10 ⁻⁵	1,965× 10 ⁵
Сталь нержавеющая 304	3,46× 10 ⁻⁵	1,965× 10 ⁵

Примечание: Если значения $\alpha_{\kappa 1}$ и Е приведены в паспорте КП, то для расчетов используют паспортные значения.

Библиография

ГОСТ 112-78 Термометры ртутные метеорологические стеклянные. Технические условия;

ПР 50.2.006-94 ГСИ. Порядок проведения поверки средств измерений;

ПР 50.2.007-2001 ГСИ. Поверительные клейма