ФЕДЕРАЛЬНЫЕ НОРМЫ И ПРАВИЛА

в области использования атомной энергии

ОСНОВНЫЕ ТРЕБОВАНИЯ К ТЕПЛОВЫДЕЛЯЮЩИМ ЭЛЕМЕНТАМ И ТЕПЛОВЫДЕЛЯЮЩИМ СБОРКАМ С УРАН-ПЛУТОНИЕВЫМ (МОКС) ТОПЛИВОМ ДЛЯ АТОМНЫХ СТАНЦИЙ

 $H\Pi - 080 - 07$

Федеральная служба по экологическому, технологическому надзору

ФЕДЕРАЛЬНЫЕ НОРМЫ И ПРАВИЛА В ОБЛАСТИ ИСПОЛЬЗОВАНИЯ АТОМНОЙ ЭНЕРГИИ

ОСНОВНЫЕ ТРЕБОВАНИЯ К ТЕПЛОВЫДЕЛЯЮЩИМ ЭЛЕМЕНТАМ И ТЕПЛОВЫДЕЛЯЮЩИМ СБОРКАМ С УРАН-ПЛУТОНИЕВЫМ (МОКС) ТОПЛИВОМ ДЛЯ АТОМНЫХ СТАНЦИЙ

HII-080-07

Москва 2007

Федеральная служба по экологическому, технологическому и атомному надзору

ФЕДЕРАЛЬНЫЕ НОРМЫ И ПРАВИЛА В ОБЛАСТИ ИСПОЛЬЗОВАНИЯ АТОМНОЙ ЭНЕРГИИ

Утверждены постановлением Федеральной службы по экологическому, технологическому и атомному надзору от 29 июня 2007 г. № 1

ОСНОВНЫЕ ТРЕБОВАНИЯ К ТЕПЛОВЫДЕЛЯЮЩИМ ЭЛЕМЕНТАМ И ТЕПЛОВЫДЕЛЯЮЩИМ СБОРКАМ С УРАН-ПЛУТОНИЕВЫМ (МОКС) ТОПЛИВОМ ДЛЯ АТОМНЫХ СТАНЦИЙ

НП-080-07

Введены в действие с 1 января 2008 г.

Москва 2007

ОСНОВНЫЕ ТРЕБОВАНИЯ К ТЕПЛОВЫДЕЛЯЮЩИМ ЭЛЕМЕНТАМ И ТЕПЛОВЫДЕЛЯЮЩИМ СБОРКАМ С УРАН-ПЛУТОНИЕВЫМ (МОКС) ТОПЛИВОМ ДЛЯ АТОМНЫХ СТАНЦИЙ. НП-080-07

Федеральная служба по экологическому, технологическому и атомному надзору Москва, 2007

В настоящих федеральных нормах и правилах в области использования атомной энергии "Основные требования к тепловыделяющим элементам и тепловыделяющим сборкам с уран-плутониевым (МОКС) топливом для атомных станций" установлены основные требования безопасности, реализуемые при проектировании и изготовлении тепловыделяющих элементов и тепловыделяющих сборок с оксидным таблетированным уран-плутониевым (МОКС) топливом для атомных станций с реакторами типа ВВЭР и БН.

Настоящий документ является одним из документов в системе федеральных норм и правил в области использования атомной энергии, устанавливающих требования к различным видам ядерного топлива, тепловыделяющим элементам и тепловыделяющим сборкам.

Выпускается впервые.

Разработан на основании Федерального закона "Об использовании атомной энергии", нормативных правовых актов Российской Федерации, федеральных норм и правил в области использования атомной энергии, других нормативных документов, а также рекомендаций международных организаций.

Нормативный документ прошел правовую экспертизу в Министерстве юстиции Российской Федерации (письмо исх. № 01/7968-AA от 14 августа 2007 г.).

Разработан в Научно-техническом центре по ядерной и радиационной безопасности при участии Кислова А.И. (Ростехнадзор), Калиберды И.В., Денисова В.А., Непейпиво М.А., Слуцкера В.Л., Шарафутдинова Р.Б. (НТЦ ЯРБ).

При разработке рассмотрены и учтены предложения Росатома, ФГУП "ГИ "ВНИПИЭТ", ФГУП "ГХК", ФГУП "ПО "Маяк", ОАО "ТВЭЛ", ОАО "МСЗ", ОАО "НЗХК", ОКБ "Гидропресс", ОКБМ и др.

СОДЕРЖАНИЕ

Перечень сокращений 3		
Основные термины и определения		
1. Назначение и область применения	. 5	
2. Общие положения	. 5	
3. Основные требования безопасности, подле-		
жащие реализации при проектировании твэлов		
и ТВС с МОКС-топливом	6	
4. Основные требования безопасности, подле-		
жащие реализации при изготовлении твэлов и		
ТВС с МОКС-топливом	10	
Приложение (рекомендуемое).		
Перечень основных показателей и характеристик,		
включаемых в технические условия на топливный		
материал, таблетки, твэлы и ТВС с МОКС-топливом 1		

ПЕРЕЧЕНЬ СОКРАЩЕНИЙ

А3	– активная зона
AC	– атомная станция
БН	– реактор на быстрых нейтронах
ввэр	– водо-водяной энергетический реактор
РУ	– реакторная установка
СУЗ	– система управления и защиты
TBC	– тепловыделяющая сборка
твэл	– тепловыделяющий элемент

ОСНОВНЫЕ ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ

В целях настоящего документа используются следующие термины и определения.

Активная зона — часть ядерного реактора, в которой размещены ядерное топливо, замедлитель, поглотитель, теплоноситель, средства воздействия на реактивность и элементы конструкций, предназначенные для осуществления управляемой цепной ядерной реакции деления и передачи энергии теплоносителю.

Повреждение твэла – нарушение хотя бы одного из установленных для твэлов проектных пределов повреждения.

Разгерметизация твэла — повреждение твэла с нарушением целостности оболочки твэла типа газовой неплотности или прямого контакта ядерного топлива с теплоносителем.

Разрушение твэла — нарушение целостности конструкции твэла, в результате которого твэл утрачивает геометрию, обеспечивающую его проектное охлаждение.

Тепловыделяющая сборка — машиностроительное изделие, содержащее ядерные материалы и предназначенное для получения тепловой энергии в ядерном реакторе за счет осуществления управляемой цепной ядерной реакции деления.

Тепловыделяющий элемент — сборочная единица, содержащая ядерные материалы и предназначенная для получения тепловой энергии в ядерном реакторе за счет осуществления управляемой цепной ядерной реакции деления и (или) для накопления нуклидов.

Уран-плутониевое (МОКС) топливо – ядерное топливо, в котором применяются ядерные материалы в виде оксида урана и оксида плутония для изготовления твэлов и ТВС.

1. НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

- 1.1. Настоящий документ устанавливает основные требования безопасности, реализуемые при проектировании и изготовлении твэлов и ТВС с оксидным таблетированным уранплутониевым топливом (далее твэлы и ТВС с МОКС-топливом) для АС с реакторами типа ВВЭР и БН.
- 1.2. Настоящий документ разработан на основании Федерального закона "Об использовании атомной энергии", нормативных правовых актов Российской Федерации, федеральных норм и правил в области использования атомной энергии, других нормативных документов, а также рекомендаций международных организаций.

2. ОБЩИЕ ПОЛОЖЕНИЯ

- 2.1. На всех этапах проектирования и изготовления твэлов и ТВС с МОКС-топливом должно быть обеспечено выполнение требований федеральных норм и правил в области использования атомной энергии.
- 2.2. Твэлы и ТВС с МОКС-топливом, использование которых предполагается в РУ, спроектированных для применения оксидного уранового топлива, а также условия их эксплуатации должны удовлетворять требованиям проекта РУ.
- 2.3. Конструкция и исполнение АЗ и ее элементов, включая твэлы и ТВС с МОКС-топливом, должны быть такими, чтобы при нормальной эксплуатации и при нарушениях нормальной эксплуатации, включая проектные аварии, не превышались соответствующие пределы повреждения твэлов.

Собрание законодательства Российской Федерации, 1995 г. № 48, ст. 4552 с изменениями, внесенными от 10.02.1997 г. № 28-Ф3, Собрание законодательства Российской Федерации, 1997 г., № 7, ст. 808; от 10.07.2001 г. № 94-Ф3, Собрание законодательства Российской Федерации, 2001 г., № 29, ст. 2949; от 28.03.2002 г. № 33-Ф3, Собрание законодательства Российской Федерации, 2002 г., № 13, ст. 1180; от 11.11.2003 г. № 140-Ф3, Собрание законодательства Российской Федерации, 2003 г., № 46 (часть I), ст. 4436.

2.4. Конструкция твэлов и ТВС с МОКС-топливом должна быть работоспособной, надежной и безопасной в течение назначенного срока службы.

3. ОСНОВНЫЕ ТРЕБОВАНИЯ БЕЗОПАСНОСТИ, ПОДЛЕЖАЩИЕ РЕАЛИЗАЦИИ ПРИ ПРОЕКТИРОВАНИИ ТВЭЛОВ И ТВС С МОКС-ТОПЛИВОМ

- 3.1. При проектировании твэлов и ТВС с МОКС-топливом должны учитываться характеристики РУ, обеспечиваться совместимость твэлов и ТВС с МОКС-топливом с элементами АЗ, РУ, другими системами АС, предназначенными для обращения с топливом, учитываться требования федеральных норм и правил в области использования атомной энергии к системам хранения и транспортирования необлученного и отработавшего ядерного топлива.
- 3.2. Принятые при проектировании твэлов и ТВС с МОКСтопливом решения должны удовлетворять критериям безопасности, подтверждаться обоснованием безопасности, в том числе расчетами, результатами экспериментов и испытаний и данными, полученными при эксплуатации АС с указанным видом топлива.
- 3.3. При проектировании твэлов и ТВС с МОКС-топливом должны приниматься во внимание условия эксплуатации РУ, в том числе режимы нормальной эксплуатации и нарушения нормальной эксплуатации, включая проектные аварии, с учетом:
 - проектных режимов работы РУ, их количества и проектного протекания;
 - силовых (механических), тепловых и радиационных воздействий на компоненты АЗ;
 - физико-химического взаимодействия материалов АЗ и теплоносителя;
 - предельных отклонений конструктивных и технологических характеристик, параметров процессов;
 - ударных и вибрационных воздействий, термоциклического нагружения, радиационной и температурной ползучести, а также старения материалов;

- влияния продуктов деления и примесей в теплоносителе и МОКС-топливе на прочность и коррозионную стойкость твэлов;
- других факторов, ухудшающих механические характеристики материалов АЗ и целостность оболочек твэлов
- 3.4. При проектировании твэлов и ТВС с МОКС-топливом должны быть установлены и обоснованы значения пределов и ограничения, определяющие условия выполнения приведенных ниже требований к твэлам и ТВС с МОКС-топливом, при которых повреждение твэлов и ТВС будет ограничено приемлемыми уровнями. Эти значения и условия устанавливаются для конкретной РУ, конфигурации АЗ, типа топливной загрузки, типа твэла и ТВС.
- 3.4.1. При нормальной эксплуатации и при нарушениях нормальной эксплуатации, в том числе при проектных авариях, должна исключаться возможность непроектных перемещений и (или) деформаций ТВС с МОКС-топливом, твэлов и других элементов ТВС и АЗ, вызывающих увеличение реактивности и ухудшение теплоотвода, приводящих к повреждению твэлов сверх проектных пределов.
- 3.4.2. Конструкция ТВС с МОКС-топливом должна быть такой, чтобы формоизменения твэлов и других элементов ТВС, возможные при нормальной эксплуатации и при нарушениях нормальной эксплуатации, включая проектные аварии, не вызывали перекрытие проходного сечения ТВС, приводящее к повреждению твэлов сверх соответствующих пределов, и не препятствовали нормальному функционированию рабочих органов СУЗ.
- 3.4.3. Топливная матрица и оболочка твэла при нормальной эксплуатации и при нарушениях нормальной эксплуатации должны выполнять функции физических барьеров.
- 3.4.4. Выгорание топлива не должно превышать установленных в проекте предельных значений.
- 3.4.5. Конструкция твэлов и ТВС с МОКС-топливом должна выдерживать нагрузки от тепловых, механических и радиационных воздействий во всех проектных режимах.

Оболочки твэлов с МОКС-топливом, концевые детали твэлов и места их соединений должны иметь установленную прочность при облучении, достаточную коррозионную стойкость,

выдерживать напряжения, возникающие вследствие внутреннего и наружного давления, вибраций, температуры и сейсмических воздействий.

- 3.4.6. Конструкция твэлов и ТВС с МОКС-топливом в течение назначенного срока службы должна исключать возможность деформаций, вызывающих недопустимое ухудшение теплосъема с поверхности твэлов. Формоизменения твэлов и конструкционных элементов ТВС с МОКС-топливом в процессе эксплуатации не должны приводить к нарушению условий их фиксации в дистанционирующих устройствах (решетках).
- 3.4.7. Уменьшение и (или) увеличение наружного диаметра твэла в процессе эксплуатации не должны превышать установленной в проекте величины.
- 3.4.8. Допустимый диапазон изменения диаметра оболочек твэлов должен быть таким, чтобы обеспечивалось размещение твэлов в дистанционирующих устройствах (решетках) с требуемой силой трения, исключались непроектные перемещения твэлов и обеспечивались необходимые теплогидравлические характеристики твэлов и ТВС с МОКС-топливом.
- 3.4.9. Допустимое удлинение оболочки твэла не должно превышать установленного в проекте предельного значения.
- 3.4.10. Оболочки твэлов должны быть совместимы с элементами дистанционирования при нормальной эксплуатации и при нарушениях нормальной эксплуатации.
- 3.4.11. При нормальной эксплуатации оболочка твэла с МОКС-топливом должна сохранять окружную устойчивость. Усталостные повреждения, возникающие в результате статических и циклических нагрузок, не должны превышать установленных в проекте величин.
- 3.4.12. Коррозия оболочки твэла с МОКС-топливом, окисление внешней и (или) внутренней поверхностей оболочки и ее гидрирование не должны приводить к недопустимому ухудшению механических характеристик твэла, нарушению работоспособности твэла, недопустимому росту температуры оболочки твэла, ее чрезмерному охрупчиванию и повреждению твэла.
- 3.4.13. Отложения на внешней поверхности оболочек твэлов не должны приводить к недопустимому ухудшению теплогидравлических характеристик твэлов и ТВС с МОКС-топливом и А3.

- 3.4.14. Фреттинг-коррозия (истирание) оболочки твэла не должна приводить к недопустимому снижению прочности оболочки и разгерметизации твэла.
- 3.4.15. Температура оболочки твэла при нормальной эксплуатации РУ не должна превышать установленного в проекте максимального значения.
- 3.4.16. Давление смеси газов под оболочкой твэла не должно превышать установленной в проекте величины.
- 3.4.17. Характеристики МОКС-топлива, конструкция и расположение твэлов и ТВС с МОКС-топливом в АЗ должны исключать возникновение локального энерговыделения, приводящего к повреждению твэлов сверх проектных пределов.
- 3.4.18. При проектных авариях, связанных с быстрым увеличением реактивности, не должна превышаться удельная пороговая энергия разрушения твэлов (энергия, выделяющаяся за короткий промежуток времени в единице массы ядерного топлива при быстром вводе реактивности, достаточная для разрушения твэла).
- 3.4.19. При проектных авариях температура МОКСтоплива не должна превышать предельного значения, характеризующего его плавление.
- 3.4.20. При проектных авариях взаимодействие между элементами твэлов и ТВС с МОКС-топливом не должно приводить к их плавлению.
- 3.4.21. Конструкция твэлов с МОКС-топливом должна исключать смещение таблеток при транспортировании твэлов, в процессе изготовления и транспортирования кассет, обеспечивать необходимую сплошность топливного столба при эксплуатации в АЗ.
- 3.4.22. Конструкция твэлов с МОКС-топливом при транспортно-технологических операциях должна выдерживать в составе ТВС и упаковочного комплекта установленные в проекте нагрузки.
- 3.4.23. Конструкция ТВС с МОКС-топливом должна обеспечивать возможность:
 - проведения ее осмотра, испытаний и контроля при изготовлении, а также контроля при эксплуатации;
 - ремонта на предприятии-изготовителе до установки в АЗ;
 - выгрузки из АЗ, в том числе после проектной аварии.

- 3.4.24. Твэлы с различным изотопным составом, твэлы с выгорающим поглотителем в топливе и специальные выгорающие поглотители в составе ТВС с МОКС-топливом должны иметь отличительные знаки, различаемые при сборке ТВС визуально и (или) с помощью промышленных средств контроля.
- 3.4.25. ТВС с МОКС-топливом должна иметь отличительные знаки, характеризующие нуклидный состав и обогащение ядерного топлива в твэлах, которые можно распознать визуально и (или) с помощью устройств перегрузки.
- 3.5. Значения параметров и характеристик твэлов и ТВС с МОКС-топливом должны устанавливаться при проектировании консервативно (с коэффициентами запаса). Коэффициенты запаса определяются с помощью экспериментальных исследований, а также опыта эксплуатации твэлов и ТВС с другими видами топлива при выборе исходных данных и проведении расчетов в обоснование безопасности. При этом должны учитываться технологические допуски при изготовлении твэлов и ТВС с МОКС-топливом, погрешности методик, программ и расчетов.
 - 4. ОСНОВНЫЕ ТРЕБОВАНИЯ БЕЗОПАСНОСТИ, ПОДЛЕЖАЩИЕ РЕАЛИЗАЦИИ ПРИ ИЗГОТОВЛЕНИИ ТВЭЛОВ И ТВС С МОКС-ТОПЛИВОМ
- 4.1. Твэлы и ТВС с МОКС-топливом должны изготавливаться в соответствии с технологической документацией (технологическими инструкциями, картами технологических процессов и др.), регламентирующей содержание и порядок выполнения всех технологических и контрольных операций, с соблюдением программы обеспечения качества.
- 4.2. Качество твэлов и ТВС с МОКС-топливом и предназначенных для их изготовления материалов, полуфабрикатов и комплектующих (далее материалы, полуфабрикаты и комплектующие) должно соответствовать критериям и требованиям безопасной эксплуатации АС, которые должны учитываться при установлении параметров и характеристик МОКС-топлива, твэлов и ТВС с МОКС-топливом при их изготовлении. Твэлы и ТВС с МОКС-топливом, материалы, полуфабрикаты и комплектующие должны соответствовать требованиям технических условий. В приложении приведен перечень основных показателей,

параметров и характеристик топливного материала (порошка диоксида плутония, порошка диоксида урана), таблеток, твэлов и ТВС с МОКС-топливом, которые должны быть определены в технических условиях.

- 4.3. Качество материалов, полуфабрикатов и комплектующих должно подтверждаться сертификатами соответствия согласно нормативным документам, регламентирующим проведение оценки соответствия оборудования, материалов, полуфабрикатов и комплектующих, поставляемых на объекты использования атомной энергии.
- 4.4. Предприятие-изготовитель твэлов и ТВС с МОКСтопливом должно осуществлять входной контроль качества материалов, полуфабрикатов и комплектующих в соответствии с техническими условиями на их поставку.
- 4.5. Детали и сборочные единицы твэлов и ТВС с МОКСтопливом должны иметь маркировку, позволяющую идентифицировать их в процессе изготовления.
- 4.6. Соответствие твэлов и ТВС с МОКС-топливом установленным требованиям должно подтверждаться предприятием-изготовителем в порядке, определенном нормативными документами.
- 4.7. Предприятия-изготовители твэлов и ТВС с МОКСтопливом, материалов, полуфабрикатов и комплектующих должны осуществлять производственный технический контроль в предусмотренном конструкторской и технологической документацией объеме. Результаты контроля должны удовлетворять требованиям настоящего документа и других нормативных документов с учетом требований проектной документации и технических условий.
- 4.8. Применяемые при контроле приборы и оборудование должны быть аттестованы и проверены перед работой, а результаты контроля зафиксированы в отчетной документации, форма которой устанавливается предприятиямиизготовителями.
- 4.9. Транспортирование и хранение твэлов и ТВС с МОКСтопливом, материалов, полуфабрикатов и комплектующих должно проводиться в соответствии с требованиями федеральных норм и правил в области использования атомной энергии и технических условий.

4.10. В комплект поставки ТВС с МОКС-топливом на АС должна входить сопроводительная документация, включающая паспорт на ТВС, технические условия, габаритный чертеж и руководство по эксплуатации.

Приложение (рекомендуемое)

Перечень

основных показателей и характеристик, включаемых в технические условия на топливный материал, таблетки, твэлы и ТВС с МОКС-топливом

- 1. Для порошка диоксида плутония:
- радионуклидный состав с указанием процентного содержания изотопов плутония;
- массовая доля суммы изотопов плутония и америция-241:
- содержание примесей;
- суммарный борный эквивалент (для ВВЭР);
- влажность:
- насыпная плотность:
- гранулометрический состав;
- полная удельная поверхность;
- мощность экспозиционной дозы на 1 кг массы на расстоянии 1 м на дату изготовления.
- 2. Для порошка диоксида урана:
- радионуклидный состав с указанием процентного содержания изотопов урана;
- содержание примесей;
- кислородный коэффициент (отношение O/U);
- суммарное содержание смеси изотопов урана;
- суммарный борный эквивалент (для ВВЭР);
- текучесть;
- спекаемость;
- влажность;
- насыпная плотность;
- гранулометрический состав;
- полная удельная поверхность.

3. Для таблеток:

- изотопный состав урана и плутония;
- массовая доля суммы изотопов урана и плутония, условная массовая доля плутония к сумме урана и плутония:
- содержание примесей;
- суммарный борный эквивалент (для ВВЭР);
- содержание водорода (для ВВЭР);
- кислородный коэффициент (отношение O/U+Pu+Am);
- средний условный размер зерна;
- распределение делящихся изотопов плутония;
- максимальный размер плутоний-содержащих (PuO₂) частиц;
- доспекаемость (термическая стабильность);
- плотность;
- наружный и внутренний диаметры, высота;
- наличие лунок или центрального отверстия для выхода газов;
- наличие фасок;
- требования к поверхности (шероховатость, допустимые размеры сколов и трещин и т. д.);
- объемная доля открытых пор;
- степень растворимости в азотной кислоте.

4. Для твэлов:

- материал оболочки;
- диаметр и толщина стенки оболочки;
- масса урана и масса плутония;
- масса топливного столба;
- фиксатор топливного сердечника;
- виды сварки нижнего и верхнего сварных швов;
- допуск на содержание плутония;
- степень герметичности;
- параметры внешней спиральной навивки (для БН);
- давление гелия;
- длина топливного столба;
- величина компенсационного объема;
- зазор между таблеткой и оболочкой;

- максимально допустимая длина единичного зазора между таблетками топливного столба, величина суммарного зазора;
- распределение делящихся изотопов плутония по высоте топливного столба:
- распределение концентрации выгорающего поглотителя (гадолиния, эрбия) по длине топливного столба (если его наличие предусмотрено проектом);
- геометрические размеры твэла (диаметр, толщина, отклонение от прямолинейности образующей трубы и т. д.);
- требования к сварным швам (количество пор, расстояние между ними и т. д.);
- требования к поверхности (шероховатость, глубина царапин, сдиры и т. д.);
- допустимое значение нефиксированного загрязнения поверхности плутонием;
- мощность эквивалентной дозы рентгеновского и гамма-излучения на поверхности твэла;
- требования к маркировке.

Для ТВС:

- изотопный состав топливной композиции;
- высота топливного столба;
- масса топлива:
- количество твэлов и твэгов;
- общая масса ТВС:
- геометрические размеры, допуски формы и расположения поверхностей, внешний вид ТВС, допустимые деформации;
- габаритные и присоединительные размеры ТВС;
- величина допустимой утечки (натекания) гелия из твэлов в составе ТВС;
- допустимое суммарное значение фиксированного и нефиксированного загрязнения наружных поверхностей ТВС;
- мощность эквивалентной дозы рентгеновского и гамма-излучения на поверхности ТВС;
- требования к маркировке.

ОСНОВНЫЕ ТРЕОВАНИЯ К ТЕПЛОВЫДЕЛЯЮЩИМ ЭЛЕМЕНТАМ И ТЕПЛОВЫДЕЛЯЮЩИМ СБОРКАМ С УРАН-ПЛУТОНИЕВЫМ (МОКС) ТОПЛИВОМ ДЛЯ АТОМНЫХ СТАНЦИЙ

НП-080-07

Ответственный за выпуск Синицына Т.В. Верстка Зернова Э.П. Оригинал-макет подготовлён в НТЦ ЯРБ

Подписано в печать 15.03.07 Тираж 100 экз. Формат 60х90¹¹₁₆

Отпечатано в НТЦ ЯРБ