МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ СССР

МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ИЗМЕРЕНИЮ КОНЦЕНТРАЦИЙ ВРЕДНЫХ ВЕЩЕСТВ В ВОЗДУХЕ РАБОЧЕЙ ЗОНЫ

(переработанные и дополненные технические условия, выпуск № 10)

инистерство здравоохранения ссср

ИЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ИЗМЕРЕНИЮ КОНЦЕНТРАЦИЙ ВРЕДНЫХ ВЕЩЕСТВ В ВОЗДУХЕ РАБОЧЕЙ ЗОНЫ

(переработанные и дополненные технические условия, выпуск №10)

Чосква-1988 r.

Методические указания по измерению концентраций вредных веществ в воздухе рабочей зоны предназначены для свииторно-апидемии логических станций и санитарных лабораторий промышленных предпри: тий при осуществлении контроля за содержанием вредных веществ в воздухе рабочей зоны, а также научно-исследовательских институто: Министерства здравоохранения СССР и других заинтересованных министерств и ведомств.

Методические указания разрабатываются и утверждаются с цель обеспечения контроля соответствия фактических концентраций вредных веществ в воздухе рабочей зоны их предельно-допустимым концентрациям (IДК)-санитарно-гигиеническим нормативам, утверждаемы министерствои эдравоохранения СССР, оценки эффективности внедренных санитарно-гигиенических мероприятий, установления необходимо ти использования средств индивидуальной защиты органов дыхания, оценки влияния вредных веществ на состояние здоровья работающих и др.

Включенные в данный выпуск методические указания подготовле ны в соответствий с требованиями I'ОСТ 12.1.005-76 "ССБТ.Воздух ребочей зоны. Общие санитарно-гигиенические требования" и ГОСТ 12.1.016-79 "ССБТ.Воздух рабочей зоны. Требования к методикам измерения концентраций вредных веществ" и одобрены Проблемной комиссией "Научене основы гигиены труда и профессиональной натолии". Методические указания являются обязательными при осуществинии вышеуказанного контроля.

Редакционная коллегия: Путилина О.Н., Бабина М.Д., Горская Р.В., Овечкин В.Г.

(жетодические указания разрешается размножить в необходимо: количестве экземиляров).

YTBEPE LAD

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

ПО ПОЛЯРОГРАФИЧЕСКОМУ ИЗМЕРЕНИЮ КОНЦЕНТРАЦИЙ МЕДИ, НИКЕЛЯ
И КОБАЛЬТА В ВОЗДУХЕ РАБОЧЕЙ ЗОНЫ

Cu A.m. 63,54

Медь — металл красноватого цвета, плотность $8,92 \text{ г/см}^3$, Т.пл. 1083 O C, Т.кип. 2350 O C, растворяется в азотной кислоте и горячей концентрированной серной кислоте.

В воздухе находится в виде аэрозоля.

Оказывает резкое раздражающее действие на слизистые оболочки верхних дыхательных путей и желудочно-кишечного тракта.

ПДК меди в воздухе I мг/м³.

NI A.u. 58,70

Никель — металл серебристо-белого цвета, плотность 8,9г/см 3 , Т.пл. I453 $^{\rm O}$ C, Т.кип. 3000 $^{\rm O}$ C, медленно растворяется в серной и азотной кислотах, легче — в разбавленной азотной кислоте.

В воздухе находится в виде аэрозоля. Обладает канцерогенным действием. ПДК никеля в воздухе 0,05 мг/м³.

Co A.w. 58,90

Кобальт — металл с характерным блеском, по цвету напоминает сталь с синеватым отливом, плотность 8.84 г/см 3 . Т.пл. 1493 $^{\rm O}$ С.

Т.кип. 3100 °C, растворяется в разбавленных серной, ааотной и хлористоводородной кислотах с образованием солей двухвалентного кобальтв.

В воздухе находится в виде аэрозоля. Обладает канцерогенным действием. ПДК кобальта в воздухе 0,5 мг/м³.

Характеристика изтода

Метод основан на восстановлении диметилглиоксиматных комплексов меди, никеля и кобальта на ртутно-капельном электроде на 0,1 и хлоридно-аммиачном фоне в присутствии сульфита натрия в переменно-токовом режиме. Потенциал восстановления относительно донной ртути: меди - 0,25 В, викеля - 0,86 В, кобальта - 1,02 В.

Нижний предел измерения в полярографируемом растворе: ме-

ди - 0,3 икг/ил, викеля - 0,01 икг/ил, кобальта - 0,02 икг/ил. Нижний предел измерения в воздухе меди - 0,15 мг/ \mathbf{u}^3 , вике-

ля - 0,005 wr/w^3 , кобальта - 0,I wr/w^3 (при отборе 50 л воздуха).

Диапазон измеряемых концентраций в воздухе от 0,15 до 0,5 $\rm wr/w^3$ меди, от 0,05 до 0,5 $\rm wr/w^3$ никеля, от 0,1 до 0,7 $\rm wr/w^3$ ко-бальтв.

Измерению не мешают алюминий, кремний, свинец, цинк.

Железо межает измерению при содержании более 20 мкг в полярографируемом объеме.

Суммарная погрешность измерения не превышает ± 20%.
Время выполнения измерений, включая отбор пробы, 3 часа.

Приборы, аппаратура и посуда

Полярограф с ртутно-капельным электродом с записью полярограмм в переменно-токовом режиме.

Аспирационное устройство.

Печь муфельнея.

Фильтродержатель.

Колби мериме, ГОСТ 1770-74, вместимостъю 25, 50, 100, 250, 500 и 1000 мл.

Пилетки, ГОСТ 20292-74, вместимостью 0,2, I, 2, 5 и IO мл. Стаканы химические, ГОСТ 10394-72.

Чашки и тигли фарфоровые, ГОСТ 9147-80Е.

Дипцы тигельные.

Баня водяная.

Реактивы, растворы и материалы

Медь металлическая, электролитическая, ГОСТ 849-78, хч. Никель металлический, ГОСТ 849-70.

Сульфат кобальта (CoSO $_{h}$ · 7H $_{2}$ O), ГОСТ 4462-78, хч.

Аммиак, ГОСТ 3760-8I, хч, 25 %-ный и I и растворы.

Хлорид амиония, ГОСТ 3773-72, хч.

Сульфит натрия, безводный, ГОСТ 195-77, хч, насыщенный раст-вор (свехеприготовленный).

Азотная кислота, ГОСТ 4461-77, хч.

Хлористоводородная кислота, ГССТ 3II8-77, хч.

Хлорядно-аммиачный фон — 50 г хлорида аммония растворяют в мерной колбе емкостью І л в дистиллированной воде, добавляют 25 г сульфита натрия, 75 мл 25 %-ного раствора аммиака и объем раствора доводят до метки (получают І в хлоридно-аммиачный фон).

Диметилглиоксим, ГОСТ 5828-77, хч, $4 \cdot 10^{-3}$ М раствор. Готовится растворением 0,018 г диметилглиоксима в 40 мл I н раствора амииака.

Фильтры АФА-ВП-20.

Стандартный раствор меди № 1 с концентрацией 0,5 мг/мл готовят растворением I г меди при нагревании в 20-25 мл азотной кислоты (I:I) в колбе висстимостью 250 мл. Раствор випаривают до небольшого объема (2-3 мл), приливают 15 мл концентрированной клористоводородной кислоты и вновь выпаривают до небольшого объема. Выпаривание проводят 2 раза, каждый раз с 5 мл клористоводородной кислоты, переливают раствор в мерную колбу вместимостью I л и доводят его до метки дистиллированной водой. Раствор устойчив более годя.

Стандартный раствор № 2 с концентрацией 10 мкг/мл готовят путем соответствующего разбавления стандартного раствора № 1 водой и применяют свежеприготовленным .

Стандартный раствор никеля № I с концентрацией I шг/ил готовят растворением I г металлического никеля при нагревании на водяной бане в фарфоровой чашке в IO мл разбавленной азотной кислоте (3:2). Содержимое чашки выпаривают до объема 3 мл, растворяют в 30-40 мл воды и доводят объем раствора водой до метки в мерной колбе вместимостью I л. Раствор устойчив более года.

Стандартные растворы никеля № 2 и 3 с концентрациями ІОмкг/ил и І мкг/мл готовят путем соответствующего разбавления стандартного раствора № І водой и применяют свежеприготовленными.

Стандартный раствор кобальта & I с концентрацией I иг/ил готовят растворением 4,77 г сульфата кобальта в I л дистиллированной волы.

Стандартные раствора кобальта № 2 и 3 с концентрациями

10 икг/ил и I мкг/ил готовят путем соответствующего разбавления

стандартного раствора № I водой и применяют свежеприготовленными.

Отбор пробы воздуха

Воздух с объемным расходом 10 л/мин аспирируют через фильтр АФА-ВП-20, помещенный в фильтродержатель. Для измерения 1/2 ПДК и ниже достаточно отобрать 50 л воздуха.

Отобранные пробы хранятся не менее 2-х недель.

Подготовка к измерению

Гретунровочные растворы готовят согласно таблиц 13, I4. I5. Таблица 13

Шкала градуировочных растворов для определения меди

Номер стандарта	Стандартный	раствор мл	меди	Me 2	Концентрация меди в объеме 10 мл, мкг/мл
I		O,			0
2		0,3			0,3
3		0,4			0,4
4		0,5			0,5
5	+	0,6			0,6
6	ı	0,7			0,7
7	(0,8			0,8
8	(0,9			0,9
9	1	0,0			1,0

Таблица I4 Шкала градуировочных растворов для определения никеля

Номер стандарта	Стандартный	раствор ил	никеля	№ 3	, Концентрация никеля в объеме 10 мл, мкг/мл
I		0			0
2		0,1			0,01
3		0,2			0,02
4		0,4			0,04
5		0,6			0,06
6		0,8			0,08
7		1,0			0,10

Таблица I5

Шкала градуировочных растворов для определения кобальта

Номер стандарта	Стандартный раств № 3, мя	ор кобальта Концентрация кобальта в объеме 10 мл, мкг/мл
I	.0.	0
2	0,2	0,02
3	0,4	0,04
4	0,6	0,06
5	0,8	0,08
6	1,0	0,10

Во все пробирки вкалы добавляют 0,3 ил раствора диметилглиоксима, I ил I и хлоридно-вимиачного фона, 0,3 ил свехеприготовленного насыщенного раствора сульфита натрия, доводят объем раствора до 10 ил водой и перемешивают. Перед проведением измерений градуировочеме растворы, подготовленные к полярографированию, выдерживают не менее 15 мин. Растворы устойчивы в течение 45 мин.

Градуировочные растворы заливают в электролизер в полярографируют. Режим полярографирования переменно-токовый; амплитуда трапедиодальной формы 30 мВ; скорость развертки 5 мВ/с; поляри-зация катодная; дяапазон тока — 0,5хI; координаты самописца X=2хIOO мВ/см: У=5хIOO мкА/см.

Высоту пика меди измеряют при потенциале $E_{\rm I/2}$ - 0,25 B, кобальта - 0,86 B, никеля - I,02 B.

Строят градуировочный график: на ось ординат наносят значения высот пиков, выраженных в мм, на ось абсцисс - соответствурщие им величины колцентраций ведеств (мкг/мл).

Проверка градуировочного графика проводится I раз в месяц или в сдучае использования новой партии реактивов.

Проведение измерения

Фильтр с отобранной пробой переносят в фарфоровый тигель и озоляют в муфальной печи при температуре 500 °C в течение 30 мин. После охлаждения зольный остаток растворяют в 5 мл концентрированной соляной кислоты, упаривают до влажных солей, переносят в мернур колбу вместимостью 25 мл, доводят объем раствора до метки водой. Отбирают аликвотную часть фильтрата объемом I-3 мл, оттитровывают раствором аммизка до рН 9,0. Затем добавляют 0,3 мл раствора диметилглиоксима, I мл I н хлоридно-аммизичного фона, 0,3мл свежеприготовленного насыщенного раствора сульфита натрия, доводят объем раствора до IO мл водой и перемешивают. Через IS минут раствор переносят в электролитическую ячейку и снимают полярограмму в пределах 0,I-I.5 В.

Количественное определение концентрации вещества в анализируемом растворе пробы (в мкг/мл) проводят по предварительно построенному градуировочному графику.

Расчет концентрации

Концентрацию вещества "С" в воздухе (мг/м³) вычисляют по Формуле:

$$C = \frac{8 \cdot B \cdot r}{6 \cdot V}$$
, где

- концентрация меди, никеля или кобальта в анализируемом растворе пробы, найденная по градунровочному графику, мкг/мл;
- в общий объем раствора пробы, мл;
- б объем раствора пробы, взятый для анализа, мл:
- г объем раствора пробы, подготовленный к полярографированию, мл;
- У- объем воздуха, отобранный для анализа и приведенный к стандартным условиям, л (см. приложение I).

__

Приложение І

Приведение объема воздуха к температуре 20 °C и давлению 760 мм рт.ст. проводят по следующей формуле:

$$V_{20} = \frac{V_t(273 + 20) \cdot P}{(273 + t^0) \cdot 101,33}$$

где V, - объем воздуха, отобранный для анализа, л:

P — барометрическое давление, кПА (IOI,33 кПа = 760 мм рт.ст.);

 t^{o} — температура воздуха в месте отбора пробы, ^{o}C .

Для удобства расчета V_{20} следует пользоваться таблицей коэффициентов (приложение 2). Для приведения объема воздуха к температуре 20 $^{\rm o}$ С и давлению 760 мм рт.ст. надо умножить $V_{\rm f}$ на соответствующий коэффициент.

Коэмфициент К для приведения объема воздуха к стандартным условиям

_	1000	4					copinal jenes	******			
давление Р, кПа/мм рт.ст.											
O _C	97,33/ 730	97,86/ 734	98,4/ 738	98,93/ 742	99,46/ 746	100/ 750	IOJ,53/ 754	IOI,06/ 758	101,33/ 760	IOI,86/ 764	
-30	I,I582	I,I646	1,1709	I,I772	I,1836	I,1899	I,1963	I,2026	I,2058	1,2122	
-26	I,1393	I,I456	1,1519	1,1581	I,I644	1,1705	1,1768	1,1831	I,1862	1,1925	
-22	1,1212	I,I274	1,1336	I,I396	I,I458	1,1519	1,1581	I,I643	I,1673	1,1735	
-18	I,1036	1,1097	1,1158	1,1218	I,I278	I,I338	1,1399	I,1400	1,1490	I,155I	
- I4	I,08-€	I,0926	I,0986	I,1045	I,II05	I,II64	I,1224	I,1284	I,1313	I,1373	
-10	I,070I	I,0760	1,0819	I,0877	I,0986	I,0994	1,1053	I,III2	I,II4I	1,1200	
- 6	I,0540	I,0599	I,0657	I,07I4	I,0772	I,0829	I,0887	I,0945	I,0974	1,1032	
-2	I,0385	I,0442	I,0499	I,0556	1,0613	I,0669	I,0726	I,0784	1,0812	I,0869	
0	I,U309	I,0366	I,0423	I,0477	I,0535	I,059I	I,0648	I,0705	I,0733	I,0789	
+2	I,0234	1,0291	I,0347	I,0402	I,0459	I,0514	I,057I	I,0627	I,0655	I,07I2	
+6	I,0087	I,0I43	I,0198	I,0253	I,0309	I,0363	I,04I9	I,0475	I,0502	I,0557	
+10	0,9944	0,9999	I,0054	1,0108	1,0162	I,02I6	1,0272	I,0326	I,0353	I,0407	
+14	0,9806	0,9860	0,9914	0,9967	I,0027	I,0074	I,0I28	I,0183	1,0209	I,0263	
+18	0,9671	0,9725	0,9778	0,9880	0,9884	0,9936	0,3989	I,0043	I,0069	I,0122	
+20	0,9605	0,9658	0,9711	0,9783	0,9816	0,9868	0,592I	0,9974	I,0000	I,0053	
+22	0,9539	0,9592	0,9645	0,9696	0,9749	0,9800	0,9853	0,9906	0,9932	0,9985	
+24	0,9475	0,9527	0,9579	0,963I	0,9683	0,9735	0,9787	0,9839	0,9865	0,9917	
+26	0,9412	0,9464	0,9516	0,9566	0,9618	0,9669	0,9721	0,9773	0,9799	0,9851	
+28	0,9349	0,9401	0,9453	0,9503	0,9655	0,9605	0,9657	0,9708	0,9734	0,9785	
+30	0,9288	0,9339	0,9891	0,9440	0,9432	0,9542	0,9594	0,9645	0,9670	0,9723	٨
+34	0,9167	0,9218	0,9268	0,9318	0,9368	0,9418	0,9468	0,9519	0,9544	0,9595	770
+38	0,9049	0,9099	0.9149	0,9199	0,9248	0.9297	0.9347	0.9397	0.9421	0.9471	•

Приложение 3

Перечень учреждений, представивних истодические указания по изметению концентраций вседных веществ в

воздухе рабочей зоны

kek n/n	Истодические указания	Учреждение, предста- вившее истодические указания
1	2	3

- Газохронатографическое измерение концентрации бутилового эфира 2,4-дихлорфеноксиуксусной кислоты
- 2. Газохроматографическое измерение концентраций винилацетата, этилацетата, ти пропилацетата, бутилацетата и амил-
- Газохрочатографическое измерение концентраций гексилового и октилового спиртов

aŭe ta ta

- 4. Фотометрическое измерение концентрации гидроперекиси изопропилбензола
- Фотометрическое измерение концентрации глицидола
- 6. Измерение концентрации дибензилкетона методом тонкослойной хроматографии
- 7. Газохроматографическое измерение концентраций 4,4-диметилдиоксана-I,3, изопрена, метанола, толуола
- Фотометрическое измерение концентрации 4,4-диметилдиоксана-1,3
- 9. Фотометрическое измерение концентрации диоксида хлора
- Фотометрическое измерение концентраций едких щелочей и карбоната натрия
- Газохроматографическое измерение концентрации изооктилового спирта
- Газохроматографическое измерение концентраций изопропилового спирта, пропана, гексана

Белорусский НИ санхтарно-гигиенический институт

ШКИЛ газобезопасности,г.Куйбышев

Новосибирский НИИ гигиены ИЗ РСФСР

Московский НХИ гигиены ии. Ф.Ф.Эрисиана

ЦНИЛ газобезопасноста, г.Куйбышев.

НИИ гигиены труда и профазболеваний, г.Тоилиси

ЦНИЛ газобезопасности, г.Куйбышев

Московский НДД гигиена им. Ф.Ф.Зрисмана

Институт Проектиромвентиляции, г. Москва

нии гигиены труда и профавболеваний, г. Донецк

ВНИИ нефтехничнеских процессов, г. Ленинград

ШНИЛ газобезопасности, г.Куйбынев

		1
I	2	3
13.	. Полярографическое измерение концент- раций меди, никеля и кобальта	Ленинградский Всесоюз- ный Ний охраны труда
Ī4,	, Газохроматографическое измерение кон- центрации мезитилена	- Ангарский НИИ гигиены труда и профзаболева- ний
15.	Оотометрическое измерение концентра- ции мезитилена	НИИ гигиены труда и профзаболеваний, г.Донецк
I6.	Изнерение концентрации метилбензил- кетона методом тонкослойной хрома- тографии	НИИ гигиены труда и профзаболеваний, г.Тбилиси
17.	Измерение концентрации нитрита ди- циклогексиламина (ингибитора НДА) методом тонкослойной хроматографии	НИИ гигиены труда и профзаболеваний, г.Киев
18.	Фотометрическое измерение концентраций органических перекисей (трет-бутилперацетата, трет-бутилпербен-зоата, трет-бутилпироперекиси, гид-роперекиси изопропилбензола, гидроперекиси и-диизопропилбензола)	НИИ гигиены труда и профзаболеваний АИН СССР, г.Москва
19.	Фотометрическое измерение концетра- ций перекиси водорода и органичес- ких перекисей	ПО Оргсинтез, г.Казань
20.	Газохроматографическое измерение концентраций пропионовой, \mathcal{L} -монохлор-пропионовой (\mathcal{L} -МХП) и \mathcal{L} , \mathcal{L} -дихлор-пропионовой (\mathcal{L} , \mathcal{L} -ДХП) кислот	НиИ гигиены труда и профзаболеваний, г.Горький
21.	Фотометрическое измерение концентра- ций серной кислоты и диоксида серы	НИИ гигиены труда и профозоболеваний, г.Донецк Институт Проектпром-вентиляции, г.Москва
22.	Фотометрическое измерение концентра- кии стеарета цинка	Филиал ВНИИ ХИМПРОЕКТ, г.Щекино Тульской обл.
23.	Газохронатографическое измерение кон- центраций трикрезола (смесь о-, м-, п-крезолов) и фенола	ВНИИ кабельной проими- ленности, г. Юриала
24.	Газохроматографическое измерение кон- центраций уксусной кислоты и метанола	Ш!ИЛ газобезопасности, г.Куйбышев
25.	Фотометрическое измерение концентра- или уксусной кислоты	Внииот вцспс, г.Ленинград

<u>I</u>	<u> </u>	2			3
26.	Газохромат рение конц дов	ографическое ентраций угл	изие- еводоро-	ПО Сргсинтез	, г. Казань
27.	Газохрочат ние концен	ографическое трации фенан	изиере- трена	Белорусский гиенический	НИ санитарно-га
28.		ографическое ентрации фор		вникот, г.	Свердлсвск
29.	Фотометрич центрации та	еское измере фурфуриловог	ние кон-	НИИ гигиены болеваний,г	труда и профза- . Донецк
30.		ографическое ентрации фур рта		_ "	-
31.	рение конце	ографическое ентраций фур рола, фурфур рилового и то рилового спиј	фурола, илового,	НПО ГИДРОЛИЗ град	ВПРОМ, г. Ленин-
32.		и циклогекса и циклогекса		НКИ гигиень заболеваний	труда и проф- 1, г. Донецк
33.	Фотометриче концентрацы амина	еское измерен и циклогексы	iие 1л—	#	_
	центраций л повой и мет	еское измерен клорангидридо закриловой ко ого ангидриде	ов акри- ислот и	НИИ гигиены Ваболеваний	труда и проф- , г. Горький
	Изиерение н зилкетона и хроматограф	етодом тонко	хлорбен- слойной	невелобав НИИ гигиены	труда и проф- , г. Тбилиси
		ское измерен тилцеллозоль		ЦНИЛ газобе: г. Куйбышев	зопасности;
57. g	Фотометриче	ское измерен ромида и иод	ие ков-	внинот, г.С	

СОДЕРЖАНИЕ

	Стр.
I. Методические указания по газохроматографичес-	
кому измерению концентрации бутилового эфира 2,4-ди-	
хлорфеноксиуксусной кислоты в воздухе рабочей зоны	3
2. Методические указания по газохроматографичес-	
кому измерению концентраций винилацетата, этилацета-	
та, пропилацетата, бутилацетата и змилацетата в воз-	
духе рабочей зоны	8
3. Mетодические указания по фототурбидиметричес-	
кому измерению концентрации генсахлорбенаола в возду-	
хе рабочей зоны	13
4. Летодические указания по газохроматографичес-	
кону измерению концентраций гексилового и октилового	
слиртов в воздухе рабочей зоны	17
5	
мерению концентрации гидроперекиси изопропилбензола	
в воздухе рабочей зоны	22
6. Нетодические указания по фотометрическому из-	
иерению концентрации глицидола в воздухе рабочей зоны	
7. Жетодические указания по измерению концентра-	
ции дибензилкетона в воздухе рабочей зоны методом	
тонкослойной хроматографии	27
8. Методические указания по гозохроматографичес-	
кому измерению концентраций 4,4-диметилдиоксана-1,3,	
изопрена, истанола, толуола в воздухе рабочей зоны	31
9. Жетодические указания по фотометрическому из-	
мерению концентрации 4,4-диметиллиоксана-1,3 в возду-	
хе рэбочей зоны	40

	Crp.
10. Методические указания по фотометрическому из-	
мерению концентрации диоксида хлора в воздухе ребочей	
зони	44
II. Методические указания по фоточетрическому из-	
мерению концентраций едких щелочей и карбоната натрия	
в воздухе рабочей зоны	49
12. Методические указания по фотометрическому из-	
мерению концентрации изобутилена в юздухе рабочей зоны	56
13. Методические указания по газохроматографичес-	
кому измерению концентрации изооктилового спирта в	
воздухе рабочей зоны	٤I
14. Методические указания по газохроматографичес-	
кому измерению концентраций изопропилового спирта, про-	
пана, гексана в воздухе рабочей зоны	65
15. Истодические указания по фотометрическому из-	
мерению концентрации карбоната циклогексилачина в воз-	
духе рабочей зоны	70
16. Методические указания по полярографическому	
измерению концентраций меди, никеля и кобальта в воз-	
духе рабочей зоны	74
17. Истодические указания по газохроматографичес-	
кому измерению концентрации мезитилена в воздухе рабо-	
чей зоны	18
18. Методические указания по фотометрическому из-	
мерению концентрации мезитилена в воздухе ребочей эсны	85
19. Методические указания по измерению концентра-	
ции метилбензилкетона в воздухе рабочей зоны методом	
тонкослойной хроизтографии	89

	Стр.
20. Методические указания по фотометрическому из-	
мерению концентрации нитрита дициклогоксиламина (инги-	
битора НДА) в воздухе рабочей зоны	93
2I. Нетодические указания по измерению концентра-	
ции нитрита дициклогексиламина (ингибитора НДА) в воз-	
духе рабочей зоны методом тонкослойной хроматографии.	98
22. Методические указания по фотометрическому из-	70
иерению концентраций органических перекисей (трет-бу-	
тимперацетата, трет-бутимпербензоата, трет-бутилгидро-	
перекиси изопропилбензола, гидроперекиси и-диизопро-	
пилбензола) в воздухе рабочей зоны	103
23leтодические указания по фотометрическому из-	
мерению концентраций перекиси водорода и органических	
перекисей в воздухе рабочей зоны	109
24. Методические указания по газохроматографичес-	
кому измерению концентраций пропионовой, д-монохлор-	
пропионовой (\angle - \bot IXП) и \angle , \angle -дихлорпропионовой (\angle , \angle -	
ДХП) кислот в воздухе рабочей зоны	115
25. Методические указания по фотометрическому из-	
мерению концентраций серной кислоты и диоксида серы в	
присутствии сульфатов в воздухе рабочей зоны	122
26. Методические указания по фотометрическому из-	
мерению концентрации стеарата цинка в воздухе рабочей	
30НУ	129
27. Методические указания по газохроматографичес-	
кому измерению концентраций трикрезола (смесь о-, и-,	
п-крезолов) и фенола в воздухе рабочей зоны	I33
28. Методические указания по газохроматографичес-	
кому измерению концентраций уксусной кислоты и метано-	

CTp.
ла в воздухе рабочей зоны
29. Методические указания по фотометрическому из-
мерению концентрации уксусной кислоты в воздухе рабочей
зоны I44
30. Методические указания по газохроматографичес-
кому измерению концентраций угловодородов в воздухе ра-
бочей зоны
31. Ветодические указания по газохронатографичес-
кому измерению концентрации фенантрена в воздухе рабо-
чей зоны
32. Методические указания по газохроматографичес-
кому измерению концентрации формальдегида в воздухе ра-
бочей зоны
33. Методические указания по фотометрическому из-
нерению концентрации фурфурилового спирта в воздухе ра-
бочей зоны
34. Методические указания по газохроматографическо-
му измерению концентраций фурфурилового спирта и фенола
в воздухе рабочей зоны
35. Методические указания по газохроматографическо-
му измерению концентраций фурфурола, метилфурфурола, фур-
фурилового, иетилфурфурилового и тетрагидрофурфурилового
спиртов в воздухе рабочей зоны
36. Методические указания по фотометрическому изме-
рению концентрации циклогексана в воздухе рабочей во -
ни
37. Методические указания по фотометрическому из-
мерению концентрации циклогенсиламина в воздухе рабо- 185
120

Стр.	
sue-	38. Методические указания по фотометрическому изме-
по-	рению концентраций хлорангидридов акриловой и метакрило-
N.	вой кислот и метекрилового ангидрида в воздухе рабочей
192	зони
щии	39. Детодические указания по измерению концентрации
)-	клорбензилиетона в воздухе рабочей зоны методом тонко-
198	слойной хроматографии
-	40. Методические указания по фотометрическому из-
-	нерению концентрации хромата циклогенсиламина в возду-
202	хе рабочей зоны
นe-	41. Методические указания по фотометрическому изме-
30-	рению концентрации этилцеллозольва в воздухе рабочей зо-
206	Bu
	42. жетодические указания по фотом трическому изие-
	рению концентраций оромида и иодида таллия в воздухе ра-
	Придожение 1
	Приложение 2
	Приложение 3