УТВЕРЖДАЮ

Главный государственный санитарный врач Российской Федерации,

Первый заместитель министра здраноохранения

Российской федерации

парта 2004 СПЕТ Онищенко

Дата введения: Е ишили чого

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

по измерению концентраций полиоксиэтилен додецилового эфира в воздухе рабочей зоны спектрофотометрическим методом

Настоящие методические указания устанавливают метод спектрофотометрии для определения в воздухе рабочей зоны массовой концентрации полиоксиэтилен додецилового эфира в диапазоне 5 - 40 мг/м³.

Полиоксиэтилен додециловый эфир - действующее вещество препарата А-100, Ж (800 г/л), фирма производитель «Кумиаи Кемикал Индастри Ко., Лтд», Япония.

 $C_{12}H_{25}O$ -(CH_2CH_2O)_а - H; где n: 0 - 30

(C2H4O) "C12H26O

Мол. масса (средняя) 494

Светло-желтая прозрачная жидкость со слабым запахом. Температура замерзания: -12^{0} С. Плотность: 0,980 г/см³ (40^{0} С). Растворимость в органических растворителях (г/100 см³): ацетон – 200-400; гексан, гептан – менее 100: дихлорметан – более 400; метанол, этанол – более 400; ксилол – 100 - 200. Растворимость в воде при 25^{0} С: 714 - 833 г/дм³. Вещество стабильно в водных растворах.

Агрегатное состояние в воздухе рабочей зоны - аэрозоль и пары.

Область применения препарата

Поверхностно-активное вещество A-100 применяется в качестве добавки к гербициду на рисе НОМИНИ, СК (400 г/л), вносимому после появления всходов сорняков, для улучшения биологической эффективности препарата. A-100 уменьшает поверхностное натяжение наносимого раствора, тем самым обеспечивая образование

однородной пленки на поверхности листьев, что способствует лучшему прилипанию гербицида и ускорению проникновения его действующего вещества в сорные растения в результате чего повышается скорость действия и эффективность гербицида.

Рекомендуемый ориентировочный безопасный уровень воздействия (ОБУШ полиоксиэтилен додецилового эфира в воздухе рабочей зоны — 10 мг/м³.

1. Погрешность измерений

Методика обеспечивает выполнение измерений с погрешностью, \mathbf{u} превышающей \pm 25%, при доверительной вероятности 0,95.

2. Метод измерения

Измерения концентраций полиоксиэтилен додецилового эфира выполняют спектрофотометрическим методом, основанным на образовании извлекаемого бензолом комплексного соединения с роданидом калия и нитратом кобальта.

Отбор проб воздуха осуществляется концентрированием в дистиллированную воду.

Нижний предел измерения в анализируемом объеме пробы – 45 мкг. Определению не мещают компоненты препаративной формы.

3. Средства измерений, вспомогательные устройства, реактивы и материалы

3.1. Средства измерений

Спектрофотометр с переменной длиной волны, типа СФ- ГОСТ 15150 46 (Россия)

Весы аналитические ВЛА-200 ГОСТ 24104

Пробоотборное устройство ОП-442ТЦ (ЗАО "ОПТЭК", г.

Санкт-Петербург) или аспирационное устройство ЭА-1 ТУ 25-11-1414-78

Барометр-анероид М-67 ТУ 2504-1797-75

Термометр лабораторный шкальный ТЛ-2, цена деления ТУ 215-73Е

1°С, пределы измерения 0 - 55°С

Колбы мерные вместимостью 100 см³ ГОСТ 1770

Пипетки градуированные 2-го класса точности ГОСТ 29227

вместимостью 1.0, 2.0, 5.0, 10 cm³

Допускается использование средств измерения с аналогичными или дучшими характеристиками.

3.2. Реактивы

Препарат А-100, Ж (800 г/л), «Кумиаи Кемикал Индастри

Ко., Лтд», Япония

Бензол, хч	ΓΟCT 5955
Вода дистиллированная	ΓΟCT 6709
Калий роданистый, хч	ΓΟCT 4139
Кобальт (II) азотнокислый, 6-водный, чда	ΓΟCT 4528
Натрий хлористый, хч	FOCT 4233

Допускается использование реактивов иных производителей с аналогичной или более высокой квалификацией.

3.3. Вспомогательные устройства, материалы

Воронки конусные диаметром 30-37 мм ГОСТ 25336

Груша резиновая

Поглотительные приборы Рыхтера ТУ 25-11-1081-75

Пробирки центрифужные ГОСТ 25336

Пробирки градуированные с пришлифованной пробкой, ГОСТ 1770

вместимостью 20-25 см³

Стеклянные палочки

Центрифуга

4. Требования безопасности

- 4.1. При работе с реактивами соблюдают требования безопасности, установленные для работ с токсичными, едкими, легковоспламеняющимися веществами по ГОСТу 12.1005-88.
- 4.2. При выполнении измерений с использованием спектрофотометра соблюдают правила электробезопасности в соответствии с ГОСТом 12.1.019-79 и инструкцией по эксплуатации прибора.

5. Требования к квалификации операторов

К выполнению измерений допускают специалистов, имеющих квалификацию не ниже лаборанта-исследователя, с опытом работы на спектрофотометре.

6. Условия измерений

При выполнении измерений соблюдают следующие условия:

- процессы приготовления растворов и подготовки проб к анализу проводят
 при температуре воздуха (20±5)⁰С и относительной влажности не более 80%.
- выполнение измерений на спектрофотометре проводят в условиям. рекомендованных технической документацией к прибору.

7. Подготовка к выполнению измерений

Перед выполнением измерений проводят приготовление растворов, установление градуировочной характеристики, отбор проб.

7.1. Приготовление раствора реактива

В мерную колбу вместимостью 100 см³ помещают 7,91 г роданида калия и 2,8 г азотнокислого кобальта, растворяют в 60 – 70 см³ дистиллированной воды, доводят водой до метки, тщательно перемешивают.

7.2. Приготовление исходного раствора полиоксиэтилен додецилового эфира для градуировки с массовой концентрацией 9 мг/см³

В мерную колбу вместимостью 100 см³ помещают 1,125 г препарата A-100. содержащего 800 г/дм³ полиоксиэтилен додецилового эфира, доводят до метки дистиллированной водой, тщательно перемешивают. Раствор хранится при комнатной температуре не более месяца.

7.3. Установление градуировочной характеристики

Градуировочную характеристику, выражающую зависимость оптической плотности (единицы оптической плотности) от концентрации полиоксиэтилен додецилового эфира в растворе (мкг/см³), устанавливают методом абсолютной калибровки по 5-ти сериям растворов. Каждую серию, состоящую из 6-ти градуировочных растворов №№ 1-6, готовят в мерных колбах вместимостью 100 см³. В каждую колбу вносят исходный раствор для градуировки (приготовленный по п. 7.2) в соответствии с таблицей, доводят объем до метки дистиллированной водой и перемешивают. Растворы готовят в день проведения градуировки.

Растворы для установле	ения градуировочн	ной характеристики
------------------------	-------------------	--------------------

Номер раствора	1	2	3	4	5	6
объем исходного раствора миноксиэтилен додецилового фира с концентрацией мг/см ³ , см ³	0	0,5	1,0	1,5	3	4
онцентрация полиоксиэтилен влецилового эфира в растворе.	-	45	90	135	270	360

В градуированные пробирки вместимостью 25 см³ помещают по 10 см³ растворов (№№ 1 – 6) для установления градуировочной характеристики. В каждую пробирку вносят по 3,8 г хлористого натрия и 1,5 см³ раствора реактива, приготовленного по п. 7.1. Пробирки интенсивно встряхивают до полного растворения датем в каждую пробирку добавляют по 4 см³ бензола и снова интенсивно пряхивают в течение 2-х минут. После полного разделения фаз, верхний бензольный отбирают с помощью пипетки в центрифужные пробирки и цетрифугируют в нение 5-ти минут при 3000 об/мин. Прозрачный раствор переносят в кюветы с полициной поглощающего слоя 10 мм и фотометрируют при длине волны 320 нм носительно градуировочного раствора № 1. Окраска устойчива в течение 24-х часов.

Строят градуировочный график зависимости оптической плотности раствора оп), или его пропускания (%), от концентрации полиоксиэтилен додецилового фира в растворе (мкг/см³).

Стабильность градуировочной характеристики проверяют ежедневно по анализу тандартных растворов различной концентрации. Если значения оптической вотности отличаются более, чем на 10% от данных, заложенных в градуировочную врактеристику, ее строят заново, используя свежеприготовленные градуировочные востворы.

7.4. Отбор проб

Отбор проб воздуха проводят в соответствии с требованиями ГОСТ 12.1.005-88 ССБТ. Общие санитарно-гигиенические требования к воздуху рабочей зоны".

В течение 15 минут отбирают 2-е параллельные пробы. для чего воздух выпирируют с объемным расходом 3 дм³/мин через 2 поглотительных сосуда Рыхтера, выполненые 5 см³ дистиллированной воды, установленные параллельно.

Для измерения концентрации полиоксиэтилен додецилового эфира на уровне 0,5 ОБУВ воздуха рабочей зоны необходимо отобрать 90 дм³ воздуха (две параллельные пробы по 45 дм³ воздуха). Срок хранения отобранных проб при комнатной температуре 2 дня,

8. Выполнение измерений

Содержимое поглотительных сосудов 2-х параллельных проб объединяют в градуированной пробирке вместимостью 20 – 25 см³. В каждую пробирку вносят по 3.8 г хлористого натрия и 1.5 см³ раствора реактива, приготовленного по п. 7.1. Пробирки интенсивно встряхивают до полного растворения соли. Затем в каждую пробирку добавляют по 4 см³ бензола и снова интенсивно встряхивают в течение 2-х минут. После полного разделения фаз, верхний бензольный слой отбирают с помощью пипетки в центрифужные пробирки и цетрифугируют в течение 5-ти минут при 3000 об/мин. Прозрачный раствор переносят в кюветы с толщиной поглощающего слоя 10 мм и фотометрируют при длине волны 320 нм относительно градуировочного раствора. № 1, приготовленного одновременно с пробой.

Устанавливают интенсивность поглощения, с помощью градуировочного графика определяют концентрацию полиоксиэтилен додецилового эфира в растворе пробы.

Пробы, имеющие поглощение большее, чем градуировочный раствор с концентрацией полиоксиэтилен додецилового эфира 360 мкг/см³, разбавляют бензолом.

9. Обработка результатов измерений

Массовую концентрацию полиоксиэтилен додецилового эфира в пробе воздуха рабочей зоны X, мг/м³, рассчитывают по формуле:

$$X = C*W_0/V_{20}$$
, где

- X содержание полиоксиэтилен додецилового эфира в пробе воздуха. мг/м 3 ;
- С концентрация полиоксиэтилен додецилового эфира в растворе пробы. найденная по градуировочному графику, мкг/см 3 ;
- W_0 объем раствора пробы. см³;

 V_{20} - объем пробы воздуха, отобранный для анализа, приведенный к стандартным условиям (давление 760 мм рт. ст., температура 20 $^{\circ}$ C), дм 3 .

$$V_{20} = 0.386 *P* ut/(273+T),$$

где Т - температура воздуха при отборе пробы (на входе в аспиратор), град.С,

- Р атмосферное давление при отборе пробы, мм рт.ст.
- и расход воздуха при отборе пробы, дм3/мин,
- t длительность отбора пробы, мин.

10. Оформление результатов измерений

Результат количественного анализа представляют в виде:

• результат анализа X (мг/м 3), характеристика погрешности δ , %, P = 0,95 или X \pm Δ мг/м 3 , P = 0,95. где

$$\Delta = \frac{\delta \cdot X}{100} , \text{ mr/m}^3$$

Результат измерений должен иметь тот же десятичный разряд, что и погрешность.

11. Контроль погрешности измерений

Оперативный контроль погрешности и воспроизводимости измерений осуществляется в соответствии с рекомендациями МИ 2335-95. ГСИ. Внутренний контроль качества результатов количественного химического анализа.

12. Разработчики

Юдина Т.В., Федорова Н.Е., Рогачева С.К. (Федеральный научный центр гигиены им. Ф.Ф. Эрисмана, г. Мытищи Московской обл.).