4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Определение остаточных количеств пестицидов в пищевых продуктах, сельскохозяйственном сырье и объектах окружающей среды

Сборник методических указаний МУК 4.1.1437—4.1.1448—03, МУК 4.1.1453—4.1.1460—03, МУК 4.1.1467—03

Выпуск 4

Издание официальное

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Определение остаточных количеств пестицидов в пищевых продуктах, сельскохозяйственном сырье и объектах окружающей среды

Сборник методических указаний МУК 4.1.1437—4.1.1448—03, МУК 4.1.1453—4.1.1460—03, МУК 4.1.1467—03

Выпуск 4

ББК 51.21 О 37

О 37 Определение остаточных количеств пестицидов в пищевых продуктах, сельскохозяйственном сырье и объектах окружающей среды: Сборник методических указаний. Вып. 4—М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2007.—254 с.

Настоящий сборник содержит копии оригиналов методических указаний по определению остаточных количеств пестицидов в пищевых продуктах, сельскохозяйственном сырье и объектах окружающей среды.

- 1. Сборник подготовлен: Федеральным научным центром гигиены им. Ф.Ф. Эрисмана (академик РАМН, проф. В.Н. Ракитский, проф. Т.В. Юдина); Российским государственным аграрным университетом МСХА им. К.А. Тимирязева (проф. В.А. Калинин, к.х.н. А.В. Довгилевич); при участии Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (А.П.Веселов). Разработчики методов указаны в каждом из них.
- 2. Методические указания рекомендовваны к утверждению Комиссией по государственному санитарно-эпидемиологическому нормированию Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека.
- 3. Утверждены Главным государственным санитарным врачом Российской Федерации, Руководителем Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, академиком РАМН Г.Г. Онищенко 24 июня 2003 г.
 - 4. Введены впервые.

ББК 51.21

Формат 60х88/16 Печ.л.16,0

Тираж 150 экз.

Тиражировано отделом информационно-издательского обеспечения Федерального центра гигиены и эпидемиологии Роспотребнадзора

- © Роспотребнадзор, 2007
- © Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2007

Содержание

Определение остаточных количеств тритосульфурона в воде, почве, зерне и соломе зерновых культур, зерне и зеленой массе кукурузы методом высокоэффективной жидкостной хроматографии: МУК 4.1.1437—03	4
Определение остаточных количеств трифлуралина в зеленой массе и зерне зерновых культур, в семенах и масле подсолнечника, сои и рапса методом газожидкостной хрома- тографии: МУК 4.1.1438—03	20
Определение остаточных количеств фенпироксимата и его метаболитов в воде, почве, винограде и яблоках методом высокоэффективной жидкостной хроматографии: МУК 4.1.1439—03	30
Измерение концентрации фенпироксимата в воздухе рабочей зоны методом высокоэффективной жидкостной хроматографии: МУК 4.1.1440—03	43
Измерение концентраций флуметсулама и флорасулама в воздухе рабочей зоны методом высокоэффективной жидкостной хроматографии: МУК 4.1.1441—03	50
Определение остаточных количеств флуметсулама и флорасулама в воде, почве, зерне и соломе зерновых колосовых культур методом высокоэффективной жидкостной хроматографии: МУК 4.1.1442—03	59
Определение остаточных количеств флуазифоп-П-бутил по флуазифоп-П в воде, зеленой массе растений, клубнях картофеля, зерне гороха, семенах и масле сои, подсолнечника, рапса, льна методом газожидкостной хроматографии: МУК 4.1.1443—03	77
Определение остаточных количеств флутриафола в воде, почве, зеленой массе, зерне и соломе зерновых колосовых культур, ботве и корнеплодах сахарной свеклы, винограде и яблоках методом капиллярной газожидкостной хроматографии: МУК 4.1.1444—03	99
Определение остаточных количеств хлороталонила в зерне и соломе зерновых колосовых культур, винограде, яблоках, хлороталонила и его метаболита – SDS 3701 (R 182281) методом газожидкостной хроматографии: МУК 4.1.1445—03	113
Определение остаточных количеств эсфенвалерата в воде водоемов, почве, яблоках, клубнях картофеля, зерне и соломе зерновых колосовых культур методом газожидкостной хроматографии: МУК 4.1.1446—03	128
Измерение концентраций карбосульфана в воздухе рабочей зоны методом газожидкостной хроматографии: МУК 4.1.1447—03	139
Определение остаточных количеств диниконазола в семенах и масле подсолнечника методом газожидкостной хроматографии: МУК 4.1.1448—03	146
Измерение концентраций дикамбы в воздухе рабочей зоны газожидкостной и тонкослойной хроматографией: МУК 4.1.1453—03	153
	164
Определение остаточных количеств клефоксидима в воде, почве, зерне и соломе риса методом высокоэффективной жидкостной хроматографии: МУК 4.1.1455—03	176
Определение остаточных количеств кломазона в воде, почве, зерне, соломе риса, семенах и масле сои хроматографическими методами: МУК 4.1.1456—03	187
Определение остаточных количеств крезоксим-метила в воде, почве, яблоках и его метаболита крезоксима в воде и почве газохроматографическим методом: МУК 4.1.1457—03.	203
Определение остаточных количеств метазахлора в семенах и масле горчицы и рапса га- зохроматографическим методом: МУК 4.1.1458—03	215
Определение остатков пирипроксифена в воде, почве и яблоках методом высокоэффективной жидкостной хроматографии: МУК 4.1.1459—03	223
Определение остаточных количеств тепралоксидима в воде, почве, сахарной свекле и сое методом газожидкостной хроматографии: МУК 4.1.1460—03	233
Определение остаточных количеств бромуконазола в воде, почве, зерне и зеленой массе зерновых колосовых культур, ягодах черной смородины и винограда методом	21-
газожидкостной хроматографии: МУК 4.1.1467—03	245

УТВЕРЖДАЮ

Главный государственный санитарный врач Российской Федерации

Первый заместитель министра здравоохранения

Российской Федерации Г.ОНИЩЕНКО

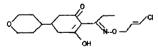
1 WAY 4 1 160-03

Дата введения: 30 иющя 2003.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

по определению остаточных количеств тепралоксидима в воде, почве, сахарной свекле и сое методом газожидкостной хроматографии

1. ВВОДНАЯ ЧАСТЬ


Фирма - производитель: БАСФ АГ, Германия

Торговое название: АРАМО

Действующее вещество: тепралоксидим (BAS 620 H)

2-[1-(3-хлор-(3Е)-пропенилоксиимино)пропил]-3-гидрокси-5-(тетрагидропиран-4-

ил)циклогекс-2-енон (ИЮПАК)

Эмпирическая формула: C₁₇H₂₄ClNO₄

Молекулярная масса: 341,8

Белое кристаллическое вещество без запаха

Температура плавления: 72,5-74,4°C Давление паров при 20°C: 1,1 х 10⁻⁷мбар

Коэффициент распределения н-октанол/вода: K_{ow} log P = 1,03 (pH 7)

Растворимость (г/л) при 20°C: гептан-10, толуол-820, дихлорметан - 1190, метанол-

330, ацетон-700, этилацетат-690, вода - 0,43.

Стабильность к гидролизу при 22 град. С: DT₅₀= 6,6 дня (рН 4); 22,1 дня (рН 5). При рН 7 и 9 вещество оставалось стабильным на протяжении 33-дневного эксперимента.

Тепралоксидим фотолабилен и достаточно быстро разрушается в почве в аэробных условиях ($DT_{SO} = 1-9$ дней).

Краткая токсикологическая характеристика:

Острая пероральная токсичность (LD_{50}) тепралоксидима для крыс составляет около 5000 мг/кг; острая дермальная токсичность (LD_{50}) для крыс более 2000 мг/кг; острая ингаляционная токсичность (LC_{50}) для крыс — более 5,1 мг/куб. дм. Вещество не вызывает раздражения сливистой оболочки глав и кожи у кроликов. LC_{50} для рыб около 100 мг/куб. дм (96 час.).

Тепралоксидим нетоксичен для ичел, итиц и диких животных.

Гигиенические регламенты применения вещества в России не установлены. В Германии предварительные значения МДУ для сахарной свеклы и верна сои составляют 0,1 и 5 мг/кг, соответственно.

Область применения препарата:

Тепралоксидим - гербицид системного действия из группы ингибиторов синтеза жирных кислот. Он быстро проникает в листья вегетирующих растений и передвигается в корни. Предназначен для уничтожения однолетних и многолетних злаковых сорных растений в посевах широколистных культур (хлопчатник, картофель, сахарная свекла, соя, подсолнечник, лицерна и овощные), виноградниках, лесопитомниках. Применяется для обработки в период от фазы 3 листьев до конца кущения у злаковых сорняков.

Проходит регистрационные испытания в России и странах СНГ под торговым названием Арамо (BAS 620 00 H) (концентрат эмульсии, содержащий 200 г тепралоксидима в 1 л препарата) на сахарной свекле и сое в качестве избирательного гербицида при норме расхода препарата до 2 л/га.

- 2. МЕТОДИКА ОПРЕДЕЛЕНИЯ ТЕПРАЛОКСИДИМА В ВОДЕ, ПОЧВЕ, САХАР-НОЙ СВЕКЛЕ И СОЕ МЕТОДОМ ГАЗОЖИЛКОСТНОЙ ХРОМАТОГРАФИИ
- 2.1 Основные положения
- 2.1.1 Принцип метода

Методика основана на газохроматографическом определении теп-

радоксидима на неподвижной фазе OV-17 после экстранции его из растительного материала и почвы водным ацетоном, из воды дихлорметаном, из масла водным метанолом, очистки экстрактов перераспределением в системе несмешивающихся растворителей и на колонке с оксидом алиминия.

Количественное определение проводится методом абсолютной калибровки.

2.1.2 Избирательность метода

В предлагаемых условиях метод специфичен в присутствии пестицидов, применяемых в интенсивной технологии выращивания сахарной свеклы и сои.

2.1.3 Метрологическая характеристика метода

Таблица 1 Метрологические параметры метода

Анализи-	ви- Метрологические параметры, P=0,95 , n=15							
	обнару жения, мг/дм,	Диапазон (- определя- (емых кон- (пентраций) мг/дм, мг/к	аначение опреде- ления, % г	ное откло нение, S	стандарт. отклон. DS, %	ный интер- вал средне- го, %		
Вода	0,005	0,005-0,05						
Почва	0,02	0,02 - 0,2	85,7	5,3	2,8	85,7 ± 5,9		
Сахарная свекла		0,05 - 0,5	82,5	5,3	2,4	82,5 ± 5,0		
Соя (эерно)	0,05	0,05 - 0,5	82,7	4,9	2,2	82,7 ± 4,6		
Масло	0,10	0,10 - 1,0	82,6	3,7	1,7	82,6 ± 3,5		

Таблица 2 Полнота определения тепралоксидима в модельных матрицах $(\ \, n \, = \, 5 \, \,)$

Матрица	Внесено	Otkphto	Доверительный интервал
	мг/куб.дм, мг/кг	Z	среднего, %
	0,005	85,8	+/- 3,6
Вода	0,00	89,8	+/- 4,2
вода	0,025	89,2	+/- 2,9
	0,05	92,8	+/- 1,5
	0,02	78,2	+/- 4,8
Іючва	0,04	86,6	+/- 2,5
	0,10	88,2	+/- 3,0
	0,20	90,0	+/- 2,6
	8, 0 5	77,0	+/- 5,1
Сахарная	0,10	82,4	+/- 4,4
свекла	0,25	84,2	+/- 4,4
	0,50	86,2	+/- 2,5
	0,05	79,0	+/- 5,5
Соя (зерно) 0,10	82,2	+/- 4,1
	0,25	83,6	+/- 3,9
	0.50	85,8	+/- 3,8
	0,10	79,8	.+/- 3,3
Macio	0,20	81,4	+/- 3,7
	D,50	83,6	+/- 3,1
	1,0	85,6	+/- 2,8

^{2.2} Реактивн, растворы и материалы Тепралоксидим с содержанием д. в. 99,8% (БАСФ, Германия) Ацетон, чда, ГОСТ 2503-79

Ацетонитрил, ч., ТУ 6-09-3534-82

Вода дистиллированная или деионизованная, РССТ 7602-72

н-Гексан, хч., ТУ 6-09-3375-78

Кальция хлорид, хч., РОСТ 4161-77

Калий углекислый, хч., ГОСТ 4221-76

Калия перманганат, хч., ГОСТ 20490-75

Кислота серная, кч., ГОСТ 4204-77

Натрий двууглекислый. ГОСТ 83-79

Натрия гидроноид, хч., РОСТ 4328-77

Натрия сульфат безводный, хч., ГОСТ 4166-76

Спирт метиловый, хч., ГССТ 5995-77

Толуол, жч., ТУ 6-09-4305-76

Фосфора пентоксид, ч., МРТУ 6-09-5759-69

Хлористый метилен. ГОСТ 12794-80

Этилацетат, ГОСТ 22300-76

Адрииния оксид для хроматографии, II степени активности по Брокману, нейтральный, МРТУ 6-09-3916-83

Целит 535 (2-15 мкм) /Серва, Германия/

Вата клопковая

Стекловата

Фильтры бумажные, синяя лента, ТУ 6-09-1678-77

Элрент N1 для колоночной хроматографии: смесь метанол-этилащетат (6:4, по объему)

Элюент N2 для колоночной хроматографии: смесь метанол-этилацетат (7:3, по объему)

2.3 Приборы, аппаратура, посуда

Хроматограф газовый Tracor 570 (США) с детектором по захвату электронов

Колонка хроматографическая, стеклянная, 1800 х 2 мм, неподвижная фаза 3% 0V-17 на Инертон-супер, 0,16-0,20 мм (Хемалол, Чехия) или 3% 0V-61 на Хромосорбе W(HP), 0,15-0,18 мм

Микрошприц емесствю 10 мкд. МШ-10Ф по ТУ 64-1-2850

Весы аналитические типа ВЛР-200, ГОСТ 19401-74

Встряхиватель механический, ТУ 64-1-1081-83

Гомогенизатор, МРТУ 42-1505-63

Прибор для перегоным при атмосферном давлении

Ротационный испаритель, тип ИР-1М, ТУ 25-11-917-76

Сито с диаметром отверстий 1 мм

Баня водяная. ТУ 46-22-603-75

Вакуумный водоструйный насос, ГОСТ 10696-75

Воронка Бюхнера, РОСТ 0147-73

Воронки делительные вместимостью 250 и 500 мл, ГОСТ 25336-82

Воронки для фильтрования, стеклянные, ГОСТ 8513-75

Колба Бунаена, ГОСТ 5614-75

Колбы конические с притертным пробками вместимостые 250 мл, ГОСТ 25336-82

Колбы мерные вместимостью 25, 50 и 100 мл, Γ ОСТ 1770-74

Колбы грушевидные вместимостью 10,50, 100, 250 и 500 мл, ГОСТ 25336-82

Колонка хроматографическая, стеклянная, 25 х 0,8 см

Пробирки градуированные с притертыми пробками вместимостью 5 и 10 мл. РОСТ 10515-75

Пипетки мерные вместимостью 1, 2 и 5 мл, ГОСТ 20292-74E Пилиндры мерные вместимостью 25, 50, 100, 250 и 500 мл, ГОСТ 1770-74

2.4 Ordon mood

Отбор проб проводится в соответствии с "Унифицированными правилами отбора проб сельскохозяйственной продукции, продуктов питання и объектов окружающей среды для определения микроколичеств пестипилов "(N 2051-79 от 21.08.79 г.).

Отобранные пробы почвы и растительного материала хранят в стеклянной таре в холодильнике не более двух дней. Для длительного хранения корнеплоды и ботву сахарной свеклы замораживайт и хранят в морозильной камере при -18 град. С; пробы почвы доводят до воздушно-сухого состояния и хранят в холодильнике; пробы зерна и масла сои хранят в стеклянной или полиэтиленовой таре в холодильнике при температуре не выше 4 град. С. Пробы воды хранят при температуре не выше 4 град. С в течение 3 дней, при температуре -18 град. С в течение месяца.

Перед анализом сухую почву просеивают через сито с отверстиями диаметром 1 мм, а ботву и корнеплоды измельчают.

2.5 Подготовка к определению

2.5.1 Подготовка и очистка реактивов и растворителей

Органические растворители перед началом работы очищают, сущат и перегоняют в соответствии с типовыми методиками. Гексан и кло-

ристый метилен встряхивают с небольшими порциями концентрированной серной кислоты до тех пор, пока свежая порция кислоты не перестанет окращиваться. Затем растворители последовательно промывают водой, 2%-ным раствором гидроксида натрия и снова водой, после чего сущат над гидроксидом натрия и перегоняют.

Ацетон перегоняют над перманганатом калия и потамом (на 1 л ацетона 10 г КМпО $_h$ и 2 г К $_{\star}$ СО $_{\star}$).

Этилацетат промывают равным объемом 5%-ного раствора углекислого натрия, сущат над хлористым кальцием и перегоняют.

Оксид алиминия V степени активности по Брокману получают добавлением 12% дистиллированной воды к навеске оксида алиминия II степени активности.

2. 5. 2 Подготовка и кондиционирование колонки

Готовур насадку (3% OV-17 на Инертон-супер) засыпают в стеклянную колонку, уплотняют под вакуумом, колонку устанавливают в термостат кроматографа, не подсоединяя к детектору, и стабиливируют в токе азота при температуре 270 град. С в течение 8-10 часов.

2.5.3 Приготовление стандартных растворов

Основной стандартный раствор тепралоксидима с содержанием 100 мкг/мл готовят растворением 0,010 г вещества, содержащего 99,8% д.в., в толуоле в мерной колбе на 100 мл. Раствор кранят в колодильнике не более месяца.

Рабочие стандартные растворы с концентрациями 0,5, 1,0, 2,5 и 5,0 мкг/мл готовят из основного стандартного раствора тепралоксидима соответствующим последовательным разбавлением толуолом. Рабочие растворы хранят в колодильнике не более 7 дней.

При изучении полноты открывания тепралоксидима в модельных матрицах используются ацетоновые растворы вещества.

2.5.4 Построение калибровочного графика

Для построения калибровочного графика в инжектор хроматографа вводят по 2 мкл рабочего стандартного раствора тепралоксидима с концентрацией 0,5, 1,0, 2,5 и 5,0 мкг/мл.

Осуществляют не менее 5 параллельных измерений и находят среднее значение высоты хроматографического пика для каждой концентрации. Строят калибровочный график зависимости высоты хроматографического пика в мм от концентрации тепралоксидима в растворе

2.5.5 Подготовка колонки с оксидом алюминия для очистки экстракта

В нижнию часть стемлиной колонки длиной 25 см и внутренним диаметром 0,8 см вставляют тампон из стемловати и вносят суспензию 15 г оксида алиминия V степени активности в 20 мл этилацетата. Дают растворителю стечь до верхнего края сорбента и помещают на него слой безводного сульфата натрия высотой 1 см. Колонку последовательно промывают 30 мл метанола и 20 мл смеси метанол-этилацетат (6:4, по объему) со скоростью 1-2 капли в секувду, после чего она готова к работе.

2.5.6 Проверка кроматографического поведения тепралоксидима на колонке с оксидом алиминия

В грушевидную колбу емкостью 10 мл отбирают 0,1 мл стандартного раствора тепралоксидима с концентрацией 100 мкг/мл. Отдувают растворитель током теплого воздуха, остаток растворяют в 3 мл элюента N1 (смесь метанол-этилацетат, 6:4) и наносят на колонку. Промывают колонку 30 мл элюента N1 и затем 50 мл элюента N2 со скоростью 1-2 капли в секунду. Отбирают фракции по 10 мл каждая, упаривают растворитель, остаток растворяют в 1 мл толуола и анализируют на содержание тепралоксидима по п. 2.7.

Фракции, содержащие тепралоксидим, объединяют, упаривают досуха, остаток растворяют в 2 мл толусла и вновь анализируют по п. 2. 7. Рассчитывают содержание тепралоксидима в элкате, определяют полноту вымывания вещества из колонки и необходимый для очистки экстракта объем элкента.

ПРИМЕЧАНИЕ: Профиль вымывания тепрадоксидима может меняться при использовании новой партии сорбента и растворителей.

- 2.6 Списание определения
- 2.6.1 Экстракция тепралоксидима
- 2.6.1.1 <u>Вода.</u> **25**0 мл предварительно отфильтрованной воды помещают в делительную воронку емкостью 500мл и дважды экстрагируют клористым метиленом порциями по 50 мл при энергичном встряживании в течение 1 мин. Объединенную органическую фазу пропускают через слой безводного сульфата натрия и упаривают досуха на роторном испарителе при 30 град. С. Для удаления следов хлористого метилена

- к сухому остатку добавляет 5 мл гексана и растворитель упаривают досуха на роторном испарителе при 30 град. С. Эту операцию повторяют еще раз. Сухой остаток растворяют в 1 мл толуола и анализируют на содержание тепралоксидима по п. 2.7.
- 2.5.1.2 <u>Почва.</u> Навеску (25 г) подготовленной почвы помещают в коническую колбу емкостью 250 мл, приливают 100 мл смеси ащетон-вода (80:20, по объему) и суспенаию перемешивают в течение 1 часа на аппарате для встряхивания. Добавляют 2 г целита и фильтруют под вакуумом на воронке Бюхнера через бумажный фильтр. Осадок на фильтре промывают 50 мл экстрагента. Дальнейшую очистку объединенного экстракта проводят по пп. 2.5.2 и 2.5.3.
- 2.5.1.3 Сахарная свекла. К навеске (30 г) измельченного материала добавляют 120 мл смеси ацетон-вода (80:20, по объему) и гомогениеируют 3 минуты при 10000 об/мин. К гомогенату добавляют 2 г целита и фильтруют под вакуумом на воронке Бихнера череа бумажный фильтр. Осадок на фильтре промывают 50 мл экстрагента. Из объединенного экстракта отбирают 1/3 объема раствора, эквивалентную 10 г ткани. Дальнейшую очистку экстракта проводят по пп. 2.6.2 и 2.6.3.
- 2.6.1.4 Зерно сом. Навеску (10 г) зерна заливают 15 мл воды и оставляют на ночь. Переносят зерно в стакан гомогенизатора, приливают 50 мл ацетона и гомогенизируют 3 минуты при 10000 об/мин. К гомогенату добавляют 2 г целита и фильтруют под вакуумом на воронке Вихнера через бумажный фильтр. Осадок на фильтре промывают 75 мл смеси ацетон-вода (80:20, по объему). Дальнейшую очистку объединенного экстракта проводят по пп. 2.6.2 и 2.6.3.
- 2.6.1.5 Масло. Навеску (5 г) соевого масла помещают в коническую колбу емкостью 200 мл, приливают 50 мл смеси метанол-вода (80: 20, по объему) и перемешивают в течение 20 минут на аппарате для встряхивания. Эмульсию переносят в делительную воронку емкостью 100 мл и оставляют на 15 минут в морозилке холодильника. Отделяют метанольный слой и масло повторно экстрагируют 50 мл смеси метанол-вода (80: 20, по объему) указанным выше способом. Объединенный метанольный экстракт фильтруют через небольшой слой хлоп-ковой ваты и в дальнейшем подвергают очистке по пп. 2.6.2 и 2.6.3.

2.5.2 Очистка перераспределением в несмешивающуюся жидкость Экстранты почвн (из п. 2. 6. 1. 2), сахарной CBekin п. 2. 6. 1. 3), верна сои (из п. 2. 6. 1. 4) и масла (из п. 2. 6. 1. 5) упаривают по волной фазы на роторном испарителе при температуре 40 Волный остаток переносят в делительную воронку вместимостью 200 мл. придивают 30 мл насыщенного раствора клюрина натрия и 40 мл клористого метилена. Смесь встряживают в течение 1 минуты и после ее разделения отделяют дихлорметановый слой. водной франции клористым метиленом повторяют еще раз (40 мл). Объединенный дихлорметановый экстракт высушивают над безводным сульфатом натрия и выпаривают на роторном испарителе досуха при температуре 30 град. С. Сухой остаток растворяют в 25 мл гексана и раствор переносят в делительную воронку вместимостью 200 мл. Колбу обмывают 50 мл ацетонитрила. который переносит в делительную ворон-Смесь встряхивают 1 минуту и стделяют ацетонитрильный слой. KV. Экстракцию гексановой фракции ацетонитридом повторяют еще раз (50 Объединенный ацетонитрильный экстракт высушивают над безвод-HHM CYMBÖRTOM HATDNE N YNADNBANT HE DOTODHOM BEKYYMHOM NCHEDNTEJE

2. 6. 3 Очистка на колонке с оксидом алюминия

досуха при температуре 40 град. С.

Остаток в колбе, полученный при упаривании очищенных по п. 2.6.2 экстрактов почвы, сахарной свеклы, семян и масла сои, количественно переносят тремя 1-мл порциями элюента N1 (метанол-этилацетат, 6:4) в подготовленную хроматографическую колонку. При анализе масла промывают колонку 15 мл элюента N1, которые отбрасыват, и элюируют тепралоксидим 15 мл элюента N1. При анализе остальных объектов промывают колонку 30 мл элюента N1, которые отбрасывают, и элюируют тепралоксидим 50 мл элюента N2 (смесь метанол-этилацетат, 7:3), собирая элюят в грушевидную колбу емкостью 100 мл. Полученные растворы упаривают досуха на роторном испарителе при температуре 30 град. С. Сухие остатки объектов растворяют в 1 мл толуода и анализируют на содержание тепралоксидима по п. 2.7.

ПРИМЕЧАНИЕ: При использовании новой партии сорбента или растворителей проводится проверка хроматографического поведения тепралоксидима на колонке с оксидом алиминия.

2.7 Условия хроматографирования

Газовый ироматограф Tracor 570 (США) с детектором по захвату

электронов (Ni).

Показания электрометра - 1 x 10^{-9} .

Скорость движения ленты самописца - 15 см/час

Колонка стеклянная, Спиральная 1800 х 2 мм; неподвижная фаза - 3% 0V-17 на Инертон-супер (0.16-0.20 мм)

Температура испарителя - 240 град. С. термостата колонки - 240 град. С. детектора - 350 град. С

Скорость потока газа-носителя (азота) - 25 мл/мин.

Объем Еводимой пробы - 2 мкл

Время удерживания тепралоксидима - 3 мин. 12 сек.

Предел детектирования - 1 нг.

Линейный диашагон детектирования - 1 - 10 нг.

Альтернативная фаза: 3% OV-61 на Хромосорбе W(HP) (0,15-0,18 мм); колонка стеклянная 1800×2 мм; условия хроматографирования те же

Каждую анализируемую пробу вводят три раза и вычисляют среднию высоту пика.

Образцы, дающие пики большие, чем стандартный раствор с концентрацией 10 мкг/мл, разбавляют толуолом.

2. 8 Обработка результатов анализа

Содержание тепралоксидима рассчитывают методом абсолютной калибровки по формуле:

$$X = \frac{H_{I} \times A \times V}{H_{O} \times m}, \text{ rge}$$

Х - содержание тепралоксидима в пробе, мг/кг или мг/куб. дм;

Нт - высота пика образца в мм;

Н∩ - высота пика стандарта в мм;

А - концентрация стандартного раствора тепралоксидима, мкг/мл;

V - объем акстракта, подготовленного для кроматографирования,
мл;

m - объем или масса анализируемой пробы, мл или г (для воды - 100 мл; для свеклы и сои - 10 г;для почвы - 25 г; для масла - 5 г).

3. TPEBORAHUH TEXHURU BEBOHACHOCTU

Соблюдать общепринятые правила безопасности при работе с дегковосиламеняющимися жидкостями, токсичными веществами, электронагревательными приборами, сосудами, работающими под вакуумом.

4. PASPABOT WIKK

Талалакина Т. Н., науч. сотр., Павлова Н. Н., науч. сотр., канд. биол. наук, Чканикова Е. В., науч. сотр., канд. мед. наук, Макеев А. М., гав. лаб., канд. биол. наук.

ВНИИ фитопатологии, 143050 Московская обл., п/о Вольшие Вязе-

мы, тел. 592-92-86

twee y hel wh and

Подпись руки Т. Н. Талалакиной, Н. Н. Павловой, Е. В. Чканиковой

и А. М. Макеева заверяю

Зав. канцеляра

FOR E.P.)