4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Определение концентраций химических веществ в воздухе

Сборник методических указаний

МУК 4.1.1044—1053—01

Выпуск 2

Часть 2

ББК 51.21 О60

Обо Определение концентраций химических веществ в воздухе: Сборник методических указаний.—Вып 2.—Ч. 2.—М.: Федеральный центр госсанэпиднадзора Минздрава России, 2002.—64 с.

ISBN 5--7508--0306--6

- 1. Подготовлен НИИ экологии человека и гигиены окружающей среды им. А. Н. Сысина РАМН авторским коллективом под руководством А. Г. Малышевой (А. Г. Малышева, Н. П. Зиновьева, А. А. Беззубов, Т. И. Голова).
- 2. Утвержден и введен в действие Главным государственным санитарным врачом Российской Федерации Первым заместителем министра здравоохранения Российской Федерации Г. Г. Онищенко 5 июня 2001 г.
 - 3. Введен впервые.

ББК 51, 21

Редакторы Кучурова Л. С., Максакова Е. И. Технические редакторы Климова Г. И., Ломанова Е. В.

Подписано в печать 31.01.02

Формат 60х88/16

Тираж 3000 экз.

Печ. л. 4,0 Заказ 3

ЛР № 021232 от 23.06.97 г. Министерство здравоохранения Российской Федерации 101431, Москва, Рахмановский пер., д. 3

Оригинал-макет подготовлен к печати и тиражирован Издательским отделом Федерального центра госсанэпиднадзора Минздрава России 125167, Москва, проезд Аэропорта, 11. Отделение реализации, тел. 198-61-01

- © Минздрав России, 2002
- © Федеральный центр госсанэпиднадзора Минздрава России. 2002

УТВЕРЖЛАЮ

Главный государственный санитарный врач
Российской Федерации –
Первый заместитель
Министра здравоохранения
Российской Федерации

Г. Г. Онищенко

5 июня 2001 г. МУК 4.1.1047—01 Дата введения: 1 октября 2001 г.

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Фотометрическое определение натрия надуглекислого 1-водного (перкарбоната натрия) в воздухе

Методические указания

Настоящие методические указания устанавливают фотометрическую методику количественного химического анализа воздуха для определения в нем содержания перкарбоната натрия в диапазоне концентраций 0.015-0.3 мг/м³.

Na₂CO₃ 1,5 H₂O₂

Мол. масса 157

Натрий перкарбонат (коммерческое название – «персоль») представляет собой бесцветные кристаллы, растворимые в воде (в 100 г при $0^{\circ}\text{C} - 11.8 \text{ г}$ и при $20^{\circ}\text{C} - 14.7 \text{ г}$), насыщенный водный раствор (рН 10.8) неустойчив при хранении. Агрегатное состояние в воздухе – аэрозоль.

Перкарбонат натрия оказывает раздражающее действие на кожу, слизистые оболочки глаз, верхних и глубоких дыхательных путей, может вызвать отек легких. ПДК_{с.с.} – 0.03 мг/м³, ПДК_{м.р.} – 0.07 мг/м³, относится к 3 классу опасности.

1. Погрешность измерений

Методика обеспечивает выполнение измерений с погрешностью, не превышающей \pm 19,4 %, при доверительной вероятности 0,95.

2. Метод измерений

Измерение концентрации перкарбоната натрия выполняют фотометрированием окрашенного в красно-оранжевый цвет продукта реакции взаимодействия роданида аммония с трехвалентным железом. Концентрирование перкарбоната натрия из воздуха осуществляют на фильтры АФА-ХП-20. Десорбцию вещества с фильтра проводят дистиллированной водой.

Нижний предел измерения в анализируемом объеме пробы — 1.5 мкг.

Определению не мешают бензоилхлорид, треххлористый фосфор, серная кислота, сульфат натрия, серно-кислый магний.

3. Средства измерений, вспомогательные устройства, материалы, реактивы

При выполнении измерений применяют следующие средства измерений, вспомогательные устройства, материалы и реактивы.

3.1. Средства измерений

Фотоэлектроколориметр	
Аспирационное устройство,	
модель 822 или любой другой	ТУ 64—186277
Барометр-анероид М-67	ТУ 2504—1797—75
Весы аналитические лабораторные ВЛА-200	ГОСТ 24104—80E
Колба мерная вместимостью 100 см ³	ΓΟCT 1770—74E
Пипетки вместимостью 1 и 5 см ³	ΓΟCT 29169—91
Химический стакан вместимостью 50 см ³	ΓΟCT 10394—72
Пробирки с пришлифованными пробками	
вместимостью 10 см3	ΓΟCT 10515—75
Микрошприц типа МШ-10	ΓΟCT 8043—74
Мерный цилиндр вместимостью 50 см ³	ΓΟCT 177074E

3.2. Вспомогательные устройства

Фильтродержатель	ТУ 6—09—1706—77
Дистиллятор	ТУ 61—1—721—79

3.3. Материалы

Фильтры аналитические аэрозольные весовые $\mathbf{A}\Phi\mathbf{A}$ - $\mathbf{X}\Pi$ —20	ТУ 95743—80
3.4. Реактивы	
Перкарбонат натрия	ТУ ЛЗ 571—64
Метиловый спирт, ч.	ГОСТ 6995—77
Роданид аммония, ч. д. а.	ГОСТ 19522—74
Спирт этиловый ректификат	ΓΟCT 18300—72
Серная кислота концентрированная, ч.	ΓΟCT 4204—77
Железоаммонийные квасцы	
(соль Мора), ч.	ГОСТ 4205—77
Вода дистиллированная	ΓΟCT 6709—72

4. Требования безопасности

- 4.1. При работе с реактивами соблюдают требования безопасности, установленные для работы с токсичными, едкими и легковоспламеняющимися веществами по ГОСТу 12.1.005—88.
- 4.2. При выполнении измерений с использованием фотоэлектроколориметра и аспирационного устройства соблюдают правила электробезопасности в соответствии с ГОСТом 12.1.019—79 и инструкцией по эксплуатации приборов.

5. Требования к квалификации оператора

К выполнению измерений допускают лиц, имеющих квалификацию не ниже лаборанта-химика.

б. Условия измерений

При выполнении измерений соблюдают следующие условия:

- 6.1. Процессы приготовления растворов и подготовки проб к анализу проводят в нормальных условиях согласно ГОСТу 15150—69 при температуре воздуха (20 ± 5)°C, атмосферном давлении 630—800 мм рт. ст. и влажности воздуха не более 80 %.
- 6.2. Выполнение измерений на фотоэлектроколориметре проводят в условиях, рекомендованных технической документацией к прибору.

7. Подготовка к выполнению измерений

Перед выполнением измерений проводят следующие работы: приготовление растворов, подготовка фотоэлектроколориметра, установление градуировочной характеристики, отбор проб.

7.1. Приготовление растворов

Исходный раствор перкарбоната натрия для градуировки (c=1,5 мг/см³). 150 мг перкарбоната натрия вносят в мерную колбу вместимостью 100 см³, доводят до метки дистиллированной водой и перемешивают. Раствор применяют свежеприготовленным.

Серная кислота $6\hat{H}$. В химический стакан вместимостью 50 см³ взвешивают 29,9 г серной кислоты, которую вливают по каплям в мерную колбу вместимостью 100 см^3 , заполненную наполовину дистиллированной водой. Охлаждают смесь до комнатной температуры и содержимое колбы доводят до метки дистиллированной водой.

Реакционный раствор. В колбу вместимостью 100 см³ со шлифом вносят 50 см³ метилового спирта, 0,25 г роданида аммония, 0,25 см³ 6Н раствора серной кислоты и насыщают солью Мора при встряхивании. Закрывают колбу пробкой и дают отстояться. Готовый раствор должен быть бесцветным или слаборозовым. Раствор применяют свежеприготовленным.

7.2. Подготовка прибора

Подготовку фотоэлектроколориметра проводят в соответствии с руководством по его эксплуатации.

7.3. Установление градуировочной характеристики

Градуировочную характеристику, выражающую зависимость оптической плотности раствора от содержания перкарбоната натрия в градуировочном растворе (мкг) устанавливают по 5-ти сериям растворов для градуировки согласно табл. 1.

Таблица 1 Растворы для установления градунровочной характеристики при определении перкарбоната натрия

№ стандарта	Исходный раствор, (c=1,5 мг/см³), см³	Дистилли- рованная вода, см ³	Концентрация стандартного раствора, мг/см³	Количество перкарбоната натрия на фильтре, мкг
1	0	100,0	0,000	0
2	1,0	99,0	0,015	1,5
3	5,0	95,0	0,075	7,5
4	10,0	90,0	0,15	15,0
5	15,0	85,0	0,225	22,5
6	20,0	80,0	0,300	30,0

По 0,1 см³ каждого градуировочного раствора наносят каплями при помощи микрошприца на фильтр АФА-ХП-20. Фильтры с нанесенным стандартом оставляют на воздухе до высыхания. Затем фильтры помещают в пробирки с пришлифованными пробками, экстрагируют 4 см³ дистиллированной водой в течение 5 мин при интенсивном встряхивании.

В градуировочные растворы вносят по 1,0 см³ реакционного раствора, закрывают пробками, перемешивают. Через 10 мин измеряют оптическую плотность при длине волны 490 нм в кюветах с толщиной поглощающего слоя 10 мм по отношению к раствору сравнения № 1 (табл. 1).

Кюветы закрывают крышками для исключения контакта раствора с воздухом. Градуировочные растворы устойчивы в течение 1 ч. Градуировочную характеристику устанавливают на средних значениях оптической плотности растворов для градуировки. Проверку градуировочной характеристики проводят один раз в квартал или в случае использования новой партии реактивов.

7.4. Отбор проб

Отбор проб воздуха проводят согласно ГОСТу 17.2.3.01—86. Воздух с объемным расходом 20 дм³/мин аспирируют через фильтр АФА-XII-20, помещенный в фильтродержатель, в течение 5 мин. Для определения 0,5 ПДК достаточно отобрать 100 дм³ воздуха.

Пробы можно хранить в эксикаторе над прокаленным хлористым кальцием в течение месяца.

8. Выполнение измерений

Фильтр с отобранной пробой помещают в пробирку с притертой пробкой, экстрагируют 4 см³ дистиллированной воды в течение 5 мин при интенсивном встряхивании. Добавляют 1,0 см³ реакционного раствора, закрывают пробкой. Через 10 мин измеряют оптическую плотность полученного раствора пробы аналогично градуировочным растворам по п. 7.3. В качестве контроля используют фильтр без пробы, обработанный так же, как и фильтр с пробой. Массу перкарбоната натрия в пробе находят по градуировочной характеристике.

9. Вычисление результатов измерения

Концентрацию перкарбоната натрия в атмосферном воздухе $(мг/м^3)$ вычисляют по формуле:

$$C = \frac{m}{V_0}$$
, где

m — масса перкарбоната натрия, найденная в анализируемом объеме пробы по градуировочной характеристике, мкг;

 V_0 – объем отобранного воздуха, приведенный к нормальным условиям, дм³;

$$V_0 = \frac{V_t \cdot 273 \cdot P}{(273 + t) \cdot 760}$$
, где

 V_i – объем воздуха, отобранный для анализа, дм³;

Р - атмосферное давление, мм рт. ст.;

t – температура воздуха в месте отбора пробы, °С.

10. Оформление результатов измерений

Результаты измерений концентраций перкарбоната натрия оформляют протоколом в виде: C, $M\Gamma/M^3 \pm 19,4\%$ или $C \pm 0,194C$, $M\Gamma/M^3$ с указанием даты проведения анализа, места отбора пробы, названия лаборатории, юридического адреса организации, ответственного исполнителя и руководителя лаборатории.

11. Контроль погрешности измерений

Контроль погрешности измерений содержания перкарбоната натрия проводят на градуировочных растворах, нанесенных на фильтры.

Рассчитывают среднее значение результатов измерений содержания в градуировочных растворах (мкг).

$$\overline{C}_i = \frac{1}{n} \cdot (\sum_{i=1}^n C_i)$$
, где

n — число измерений вещества в пробе градуировочного раствора;

 $^{\circ}$ C_i – результат измерения содержания вещества в i-ой пробе градуировочного раствора, мкг.

Рассчитывают среднее квадратичное отклонение результата измерения содержания вещества в градуировочном растворе:

$$S = \sqrt{\frac{\sum_{i=1}^{n} \left(C_i - \overline{C}_i\right)^2}{n-1}}$$

Рассчитывают доверительный интервал:

$$\Delta \overline{C}_i = \frac{S}{\sqrt{n}} \cdot t$$
, где

t - коэффициент нормированных отклонений, определяемых по табл. Стьюдента, при доверительной вероятности 0,95.

Относительную погрешность определения концентраций рассчитывают:

$$\delta = \frac{\Delta \overline{C}_i}{\overline{C}_i} \cdot 100, \%$$

Если $\delta \le 19,4\%$, то погрешность измерений удовлетворительная. Если данное условие не выполняется, то выясняют причину и повторяют измерения.

Методические указания разработаны В. А. Минаевым (НИЦ «ЭКОС», г. Москва).