Государственное санитарно-эпидемиологическое нормирование Российской Фелерации

4.1. МЕТОЛЫ КОНТРОЛЯ, ХИМИЧЕСКИЕ ФАТОРЫ

ОПРЕДЕЛЕНИЕ ОСТАТОЧНЫХ КОЛИЧЕСТВ ПЕСТИЦИДОВ В ПИЩЕВЫХ ПРОДУКТАХ, СЕЛЬСКОХОЗЯЙСТВЕННОМ СЫРЬЕ И ОБЪЕКТАХ ОКРУЖАЮЩЕЙ СРЕДЫ

Сборник методических указаний

MYK 4.1.2076-4.1.2088-06

Издание официальное

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАТОРЫ

ОПРЕДЕЛЕНИЕ ОСТАТОЧНЫХ КОЛИЧЕСТВ ПЕСТИЦИДОВ В ПИЩЕВЫХ ПРОДУКТАХ, СЕЛЬСКОХОЗЯЙСТВЕННОМ СЫРЬЕ И ОБЪЕКТАХ ОКРУЖАЮЩЕЙ СРЕДЫ

Сборник методических указаний

МУК 4.1.2076--4.1.2088--06

Издание официальное

ББК 51.21 О37

- Озт Определение остаточных количеств пестицидов в пищевых продуктах, сельскохозяйственном сырье и объектах окружающей среды: Сборник методических указаний.—М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2009—188с.
 - 1. Сборник подготовлен Федеральным научным центром гигиены им. Ф. Ф. Эрисмана (академик РАМН, проф. В. Н. Ракитский, проф. Т. В. Юдина); при участии специалистов Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека. Разработчики методов указаны в каждом из них.
 - 2. Рекомендованы к утверждению Комиссией по государственному санитарно-эпидемическому нормированию при Федеральной службе по надзору в сфере защиты прав потребителей и благополучия человека.
 - 3. Утверждены Главным государственным санитарным врачом Российской Федерации, Первым заместителем Министра здравоохранения Российской Федерации, академиком РАМН Г. Г. Онищенко.
 - 4. Введены впервые.

ББК 51.21

Формат 60х88/16 Печ. л. 11,75 Тираж 100 экз.

Тиражировано отделом издательского обеспечения Федерального центра гигиены и эпидемиологии Роспотребнадзора

117105, Москва, Варшавское ш., 19а Отделение реализации, тел./факс 952-50-89

Содержание

1. Методические указания по определению остаточных количеств глюфосинат	
аммония и его метаболита в зерне гороха газохроматографическом методом.	
MYK 4.1.2076-06	4
2. Методические указания по измерению концентраций дикамбы в	
атмосферном воздухе населенных мест методом газожидкостной хроматографии. МУК	
4.1.2077-06	2
3. Методические указания по опредслению остаточных количеств квинклорака	
в зерне риса методом капиллярной газожидкостной хроматографии.	
MYK 4.1.2078-06	5
4. Методические указания по определению остаточных количеств квинклорака	
в зерне риса методом высокоэффективной жидкостной хроматографии.	
МУК 4.1.2079-064	9
5. Методические указания по определению остаточных количеств люфенурона	
в томатах методом высокоэффективной жидкостной хроматографии.	
МУК 4.1.2080-066	2
6. Методические указания по определению остаточных количеств метамитрона в воде,	
почве, ботве и корнеплодах сахарной, столовой и кормовой свеклы методом	
капиллярной газожидкостной хроматографии. МУК 4.1.2081-067	2
7. Методические указания по определению остаточных количеств Трибенурон-метила	
в семенах и масле подсолнечника методом высокоэффективной жидкостной	
хроматографии. МУК 4.1.2082-06	7
8. Методические указания по определению остаточных количеств тиаметоксама в	
семенах и масле подсолнечника методом высокоэффсктивной жидкостной	_
хроматографии. МУК 4.1.2083-0610	6
9. Методические указания по определению остаточных количеств тебуконазола в	
семенах, масле и зеленой массе рапса методом капиллярной газожидкостной	_
хроматографии. МУК 4.1.2084-06	U
10. Методические указания по измерению концентраций тринексапак-этила в	
воздухе рабочей зоны методом высокоэффективной жидкостной хроматографии.	_
МУК 4.1.2085-06	2
11. Методические указания по определению остаточных количеств тринексапак-этила	
и его основного метаболита тринексапака-кислоты в воде, тринексапак-этила по	
метаболиту тринексапаку-кислоте в ночве, зерне и соломе зерновых	
колосовых культур методом высокоэффективной жидкостной хроматографии. МУК 4.1.2086-06	^
2.40 2. (1.1.2000 00:11111111111111111111111111111111	2
12. Методические указания по определению остаточных количеств	
Альфа-циперметрина в семенах и масле рапса методом газожидкостной хоматографии. МУК 4 1.2087-06.	2
- Postarol parplini	Z
13. Мегодические указания по измерению концентраций эсфенвалерата	
в атмосферном воздухе населенных мест методом газожидкостной хроматографии.	e
MYK 4.1.2088-06	o

УТВЕРЖДАЮ

Руководитель Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека,

Главный государственный санитарный врач

Российской Федерации

Г. Онищенко

Дата введения

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ МЕТОДИЧЕСКИЕ УКАЗАНИЯ

ПО ОПРЕДЕЛЕНИЮ ОСТАТОЧНЫХ КОЛИЧЕСТВ МЕТАМИТРОНА В ВОДЕ, ПОЧВЕ, БОТВЕ И КОРНЕПЛОДАХ САХАРНОЙ, СТОЛОВОЙ И КОРМОВОЙ СВЕКЛЫ МЕТОДОМ КАПИЛЛЯРНОЙ ГАЗОЖИДКОСТНОЙ ХРОМАТОГРАФИИ

МУК 4.1.²⁰⁸/-06

Настоящие методические указания устанавливают метод капиллярной газожидкостной хроматографии для определения массовой концентрации метамитрона в воде в диапазоне $0,01-0,1\,\text{мг/дм}^3$, в почве - $0,05-0,5\,\text{мг/кг}$, в ботве - $0,03-0,3\,\text{мг/кг}$ и в корнеплодах сахарной, столовой и кормовой свеклы в диапазоне $0,015-0,15\,\text{мг/кг}$.

Метамитрон — действующее вещество гербицида Пилот, ВСК (700 г/л), фирма производитель ЗАО фирма «Август» (Российская Федерация).

4-амино-4,5-дигидро-3-метил-6-фенил-1,2,4-триазин-5-он (ИЮПАК) 4-амино-3-метил-6-фенил-1,2,4-триазин-5(4H)-он (С.А.)

C₁₀H₁₀N₄O

Мол. масса: 202,2

Желтоватое кристаллическое вещество без запаха. Температура плавления: $166,9^{\circ}$ С. Давление паров при 25° С: 2×10^{-3} мПа. Коэффициент распределения ноктанол/вода: K_{OW} log P=0,83. Растворимость (г/дм³) при 20° С: дихлорметан – 30-50, хлороформ - 29, метанол – 23, изопропанол – 5.7, толуол – 2.8, гексан – менее 0.1, вода – 1,7.

Вещество высокостабильно в кислой среде, но разлагается сильными щелочами (pH>10): $DT_{50} = 410$ дней (pH 4), 740 час. (pH 7), 230 час. (pH9).

Метамитрон быстро разрушается в воде и на поверхности почвы.

Краткая токсикологическая характеристика

Острая пероральная токсичность (LD₅₀) для крыс – 1200, для мьпшей – 650 мг/кг; острая дермальная токсичность (LD₅₀) для крыс - более 4000 мг/кг; острая ингаляционная токсичность (LC₅₀) для крыс - более 330 мг/м³ воздуха. LC₅₀ для рыб 326-443 мг/дм³ (96 час.). Гербицид нетоксичен для птиц, пчел и диких животных.

Гигиенические регламенты применения метамитрона: ОДК в почве -0.4 мг/кг; ПДК в воде водоемов -0.3 мг/дм³; МДУ в свекле сахарной и столовой -0.03 мг/кг.

Область применения препарата

Метамитрон — системный гербицид, поглощается корнями и в меньшей степени листьями растений и транспортируется в акропетальном направлении. Применяется для борьбы с однолетними злаковыми и широколистными сорняками в посевах сахарной, столовой и кормовой свеклы путем допосевного или довсходового внесения или опрыскивания вегетирующих растений.

Зарегистрирован в России под торговым названием Пилот, ВСК (700 г/л) в качестве средства борьбы с сорняками на посевах сахарной, столовой и кормовой свеклы с нормой расхода препарата не более 2 кг/га при одно- или двукратной обработке (опрыскивание посевов по всходам сорняков с последующей обработкой через 8-14 дней при повторном отрастании сорняков).

1. Метрологические характеристики метода

При соблюдении всех регламентированных условий проведения анализа в точном соответствии с данной методикой погрешность (и ее составляющие) результатов измерений при доверительной вероятности Р=0,95 не превышает значений, приведенных в таблице 1, для соответствующих диапазонов концентраций.

Метрологические параметры

Анализируе- мый объект	Диапазон определя- емых кон- центраций мг/дм ³ , мг/кг	Показатель точности (граница относительной погрепности), ±8, % P=0,95	Стандартное отклонение повторяемости от, %	Предел повто- ряемости, г, %	Предел воспроизво- димости, R, %
Вода	более 0,01 до 0,1 вкл.	50	3,1	8,7	13,5
	от 0,05 до 0,1 вкл.	50	4,0	11,2	17,3
Почва	более 0,1 до 0,5	25	2,5	6,9	10,7
Ботва столовой	от 0,03 до 0,1 вкл.	50	3,6	10,1	15,6
свеклы	более 0,1 до 0,3	25	2,8	7,8	12,1
Корнеплоды столовой	от 0,015 до 0,1 вкл.	50	3,0	8,4	13,4
свеклы	более 0,1 до 0,15	25	2,4	6,7	10,5
Корнеплоды	от 0,015 до 0,1 вкл.	50	3,2	9,0	14,0
сахарной свеклы	более 0,1 до 0,15	25	1,9	5,3	8,3
Корнеплоды кормовой	от 0,015 до 0,1 вкл.	50	2,9	8,1	12,6
свеклы	более 0,1 до 0,15	25	2,2	6,2	10,0

Полнота извлечения вещества, стандартное отклонение, доверительный интервал среднего результата для полного диапазона концентрации (n=20) приведены в таблице 2.

Таблица 2 Полнота извлечения вещества, стандартное отклонение, доверительный интервал среднего результата для n=20, P = 0,95

	Метрологические параметры, P = 0,95, n = 20				
Анализируе- мый объект	Предел об- наружения, мг/дм ³ , мг/кг	Диапазон определяемых концентраций мг/дм ³ , мг/кг	Среднее значение определения %	Стандартное отклонение, S, %	Довери- тельный интервал среднего результата, ± %
1	2	3	4	5	6
Вода	0,01	0,01 - 0,1	90,1	2,8	±2,6

1	2	3	4	5	6
Почва	0,05	0,05-0,5	85,8	4,9	±4,6
Ботва столовой свеклы	0,03	0,03-0,3	82,7	3,7	±3,8
Корнеплоды столовой свеклы	0,015	0,015-0,15	84,5	4,2	±4,0
Корнеплоды сахарной свеклы	0,015	0,015-0,15	87,7	3,4	±3,2
Корнеплоды кормовой свеклы	0,015	0,015-0,15	83,7	3,7	±3,8

2. Метод измерений

Методика основана на определении вещества с помощью капиллярной газожидкостной хроматографии (ГЖХ) с электронозахватным детектором (ЭЗД). Контроль метамитрона в матрицах осуществляется по содержанию вещества после экстракции его из воды хлористым метиленом, из почвы водным ацетоном, из ботвы и корнеплодов свеклы ацетоном, очистки экстракта перераспределением в системе несмешивающихся растворителей, а также на колонке с силикагелем и концентрирующем патроне Диапак С8.

Количественное определение проводится методом абсолютной калибровки.

3. Средства измерений, вспомогательные устройства,

реактивы и материалы

3.1. Средства измерений

Газовый хроматограф «Кристалл 2000М» с ЭЗД	Номер Госреестра
(СКБ «Хроматэк», Россия)	№ 14516-95
Весы аналитические ВЛА-200	ГОСТ 24104
Весы лабораторные общего назначения с наибольшим	FOCT 7328
пределом взвешивания до 500 г и пределом допустимой	
погрешности +/- 0,036 г	
Колбы мерные вместимостью 2-100-2, 2-1000-2	FOCT 1770
Меры массы	ΓΟCT 7328

Пипетки градуированные 2-го класса точности	FOCT 29227
вместимостью 1,0; 2,0; 5,0; 10 см ³	
Пробирки градуированные с пришлифованной пробкой	ГОСТ 1770
вместимостью 5 см ³	
Цилиндры мерные 2-го класса точности вместимостью	FOCT 1770
25, 50, 100, 500 и 1000 см ³	

Допускается использование средств измерения с аналогичными или лучшими характеристиками.

3.2. Реактивы

Метамитрон, аналитический стандарт фирмы Байер (Гер	мания) с содержанием
д.в. 99,5 %	
Ацетон, чда	ΓΟCT 2603-79
Ацетонитрил, хч	ТУ 6-09-3534-87
Вода бидистиллированная или денонизованная	FOCT 7602
н-Гексан, хч	ТУ 6-09-3375
Метилен хлористый (дихлорметан), хч	ΓΟCT 12794
Натрий сернокислый, безводный, хч	ΓΟCT 4166
Натрий хлористый, хч	ΓΟCT 4233
Этиловый эфир уксусной кислоты, ч	ГОСТ 22300

Допускается использование реактивов иных производителей с аналогичной или более высокой квалификацией.

3.3. Вспомогательные устройства, материалы

Азот газообразный (баллон), осч	ГОСТ 9293			
Аппарат для встряхивания типа АВУ-6с	ТУ 64-1-2851-78			
Ванна ультразвуковая, модель D-50, фирма Branson Instr. Co. (США)				
Воронка Бюхнера	ΓΟCT 0147			
Воронки делительные вместимостью 100 и 250 см ³	ГОСТ 25336			
Воронки конусные диаметром 30-37 и 60 мм	ΓΟCT 25336			
Гомогенизатор	МРТУ 42-1505			
Дефлегматор елочный	ΓΟCT 9737			
Колба Бунзена	ГОСТ 5614			
Колбы плоскодонные вместимостью 250 см ³	ΓΟCT 9737			
Колбы круглодонные на шлифе вместимостью 25 и 100 ${\rm cm}^3$	ГОСТ 9737			
Колонка кварцевая капиллярная ZB-50, длиной 30 м, внутренним				

диаметром 0,32 мм, толщина пленки 0,5 мкм, неподвижная фаза OV-17,

фирма Phenomenex (США) или аналогичная

Колонка хроматографическая стеклянная, длиной 25 см. ГОСТ 9737

внутренним диаметром 8-10 мм

Насос водоструйный вакуумный ГОСТ 10696

Патроны концентриующие Диапак C8 (0,6 r), TУ 4215-002-05451931-94

ЗАО БиоХимМак СТ (Москва, Воробьевы горы, МГУ)

Ротационный вакуумный испаритель ИР-1М или ТУ 25-11-917

ротационный вакуумный испаритель B-169 фирмы Buchi (Швейцария)

Силикагель для адсорбционной хроматографии

(Вельм, Германия) I степени активности

Стаканы химические вместимостью 100 и 500 см³ ГОСТ 25336

Стекловата

Установка для перегонки растворителей

Фильтры бумажные «красная лента», обеззоленные ТУ 6-09-2678-77

или фильтры из хроматографической бумаги Ватман ЗММ

Шприц для ввода образцов для газового хроматографа

вместимостью 1 - 10 мм³ (Hamilton, США)

Допускается применение другого оборудования с аналогичными или лучшими характеристиками.

4. Требования безопасности

- 4.1. При выполнении измерений необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007, требования электробезопасности при работе с электроустановками по ГОСТ 12.1.019, а также требования, изложенные в технической документации на газовый хроматограф.
- 4.2. Помещение должно соответствовать требованиям пожаробезопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009. Содержание вредных веществ в воздухе не должно превыплать норм, установленных ГН 2.2.5.1313-03 «Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны». Организация обучения работников безопасности труда по ГОСТ 12.0.004.

5. Требования к квалификации операторов

К выполнению измерений допускают специалистов, имеющих квалификацию не ниже лаборанта-исследователя с опытом работы на газовом хроматографе. К проведению пробоподготовки допускают оператора с квалификацией «лаборант», имеющего опыт работы в химической лаборатории.

6. Условия измерений

При выполнении измерений соблюдают следующие условия:

- процессы приготовления растворов и подготовки проб к анализу проводят при температуре воздуха (20+5) °C и относительной влажности не более 80%.
- выполнение измерений на газовом хроматографе проводят в условиях, рекомендованных технической документацией к прибору.

7. Подготовка к выполнению измерений

Измерениям предшествуют следующие операции: очистка органических растворителей (при необходимости), приготовление растворов, кондиционирование хроматографической колонки, установление градуировочной характеристики, подготовка колонки с силикагелем и концентрирующего патрона Диапак С8.

7.1. Очистка органических растворителей

7.1.1. Очистка н-гексана

Растворитель последовательно промывают порциями концентрированной серной кислоты до прекращения окрашивания последней в желтый цвет, затем водой до нейтральной реакции промывных вод, перегоняют над потациом.

7.1.2. Очистка этилацетата

Этилацетат промывают последовательно 5%-ным водным раствором карбоната натрия, насыщенным раствором хлористого кальция, сушат над безводным карбонатом калия и перегоняют.

7.1.3. Очистка ацетона

Ацетон перегоняют над перманганатом калия и поташом (на 1 л ацетона 10 г $KMnO_4$ и 2 г K_2CO_3).

7.1.4. Очистка силикагеля

Силикагель I степени активности встряхивают с двойным объемом очищенного ацетона и затем фильтруют на воронке Бюхнера через бумажный фильтр. Силикагель на фильтре промывают 1,5 объемом ацетона и затем высушивают при температуре 130^{0} С в течение 3 часов.

7.2. Подготовка колонки с силикагелем и концентрирующего патрона Диапак С8 для очистки экстракта

Нижнюю часть стеклянной колонки длиной 25 см и внутренним диаметром 8-10 мм уплотняют тампоном из стекловаты, медленно выливают в колонку (при открытом

кране) суспензию 3 г силикагеля I степени активности в 15 см³ гексана. Дают растворителю стечь до верхнего края сорбента и помещают на него слой безводного сульфата натрия высотой 1 см. Колонку промывают 15 см³ смеси гексан-ацетон (8:2, по объему) со скоростью 1-2 капли в сек., после чего она готова к работе.

Концентрирующий патрон Диапак С8 промывают последовательно с помощью медицинского шприца 10 см³ метанола, 5 см³ ацетонитрила и 5 см³ смеси ацетонитрилвода (2:8, по объему) со скоростью 5 см³/мин.

7.3. Проверка хроматографического поведения метамитрона на колонке с силикагелем

В круглодонную колбу вместимостью 10 см³ помещают 0,1 см³ градуировочного раствора № 1 метамитрона с концентрацией 10 мкг/см³ в этилацетате (п. 7.5.2). Отдувают растворитель током теплого воздуха, остаток растворяют в 3 см³ этилацетата, помещая в ультразвуковую ванну на 1 мин. Раствор напосят на колонку с силикателем, подготовленную по п.7.2. Промывают колонку 30 см³ смеси гексанацетон (8:2, по объему) со скоростью 1-2 капли в сек., элюат отбрасывают. Затем колонку с силикателем промывают 40 см³ смеси гексан-ацетон (7:3, по объему). Фракционно (по 10 см³) отбирают элюат, упаривают, остатки растворяют в 1 см³ этилацетата, помещая в ультразвуковую ванну на 1 мин., и анализируют на содержание метамитрона по п.9.5.

7.4, Подготовка и кондиционирование хроматографической колонки

Капиллярную кварцевую колонку ZB-50 (типа OV-17) устанавливают в термостат хроматографа и, не подсоединяя к детектору, кондиционируют при температуре 280° C и скорости газа-носителя 2 см^{3} /мин в течение 8-10 часов.

7.5. Приготовление градуировочных растворов

7.5.1. Исходный раствор метамитрона для градуировки (концентрация 100 мкг/см 3). В мерную колбу вместимостью 100 см 3 помещают 0,010 г метамитрона, растворяют в 40-50 см 3 этилацетата, доводят этилацетатом до метки, тщательно перемешивают.

Раствор хранят в морозильной камере при температуре не вышс –18°C в течение 3-х месяцев.

7.5.2. Раствор метамитрона №1 для градуировки (концентрация 10 мкг/см³).

В мерную колбу вместимостью 100 см³ помещают 10 см³ исходного раствора метамитрона с концентрацией 100 мкг/см³ (п.7.6.1.), разбавляют этилацетатом до метки.

Этот раствор используют для приготовления рабочих градуировочных растворов №№ 2-5.

Для приготовления проб воды, почвы, ботвы и корнеплодов с внесением при оценке полноты извлечения метамитрона из исследуемых образцов используют ацетоновый раствор метамитрона с концентрацией 10 мкг/см³.

Градуировочный раствор № 1 и ацетоновый раствор метамитрона хранят в морозильной камере при температуре не выше –18°С в течение месяца.

7.5.3. Рабочие растворы №№ 2-5 метамитрона для градуировки (концентрация $0, 1\text{-}1, 0 \text{ мкг/см}^3$).

В 4 мерные колбы вместимостью 100 см³ помещают 1.0, 2.0, 5.0 и 10.0 см³ градуировочного раствора № 1 метамитрона с концентрацией 10 мкг/см³ (п.7.5.2), доводят до метки этилацетатом, тщательно перемешивают, получают рабочие растворы №№ 2-5 с концентрацией метамитрона 0.1, 0.2, 0.5 и 1.0 мкг/см³, соответственно.

Растворы готовят непосредственно перед использованием.

7.6. Установление градуировочной характеристики

Градуировочную характеристику, выражающую зависимость высоты пика (мВ) от концентрации метамитрона в растворе (мкг/см³), устанавливают методом абсолютной калибровки по 4 растворам для градуировки.

В инжектор хроматографа вводят по 1 мм³ каждого градуировочного раствора (п.7.5.3) и анализируют в условиях хроматографирования по п. 9.5. Осуществляют не менее 3-х параллельных измерений.

8. Отбор и хранение проб

Отбор проб производится в соответствии с правилами, определенными ГОСТами Р 51592-2000 «Вода. Общие требования к отбору проб», 1743.01-83 «Почвы. Общие требования к отбору проб», 26950-89 «Почвы. Отбор проб», 17421-82 «Свекла сахарная для промышленной переработки. Требования при заготовках»,

Пробы воды анализируют в день отбора или замораживают и хранят в полиэтиленовой таре в морозильной камере при температуре -18° C не более 4-х недель.

Образцы почвы подсушивают на воздухе в темноте, помещают в герметичную полиэтиленовую тару и хранят в холодильнике при температуре $4-6^{\circ}$ C не более 4-x недель. Для длительного хранения образцы почвы замораживают и хранят при температуре -18° C.

Пробы ботвы и корнеплодов свеклы хранят в стеклянной или полиэтиленовой таре в холодильнике не более одного дня; для длительного хранения пробы замораживают и хранят при температуре -18° С до анализа.

Перед анализом образцы воды фильтруют через неплотный бумажный фильтр, образцы почвы просеивают через сито с диаметром отверстий 1 мм, а ботву и корнеплоды измельчают ножом или на терке.

9. Выполнение определения

9.1. Экстракция метамитрона

- 9.1.1. Вода. Образец отфильтрованной воды объемом 100 см³ помещают в делительную воронку вместимостью 250 см³. В воронку вносят 50 см³ хлористого метилена, интенсивно встряхивают в течение 2-х минут. После разделения фаз нижний органический слой отделяют, фильтруют через слой безводного сульфата натрия, помещенный на бумажном фильтре в конусной воронке, в круглодонную колбу вместимостью 150 см³. Операцию экстракции водной фазы повторяют еще дважды, используя по 25 см³ хлористого метилена. Объединенную органическую фазу, пропущенную через слой сульфата натрия, упаривают досуха на ротационном вакуумном испарителе при температуре 30°C. Остаток в колбе растворяют в 10 см³ этилацетата и анализируют на содержание метамитрона по п.9.5.
- 9.1.2. Почва. Образец воздушно-сухой почвы массой 20 г помещают в плоскодонную колбу вместимостью 250 см³, добавляют 50 см³ денонизованной воды, перемешивают и оставляют стоять в течение 15 мин. К суспензии приливают 50 см³ ацетона и колбу помещают на встряхиватель на 1 час. Раствор (с осадком почвы) фильтруют под вакуумом на воронке Бюхнера через бумажный фильтр в колбу вместимостью 250 см³. Осадок на фильтре промывают 50 см³ ацетона. Экстракт и промывную жидкость переносят в химический стакан, перемешивают, измеряют объем раствора и ½ его часть (эквивалентную 10 г образца) переносят в круглодонную колбу вместимостью 100 см³. Далее проводят очистку экстракта по п.9.2.
- 9.1.3. Ботва и корнеплоды. Образец измельченного растительного материала массой 20 г помещают в стакан гомогенизатора вместимостью 500 см³, добавляют 100 см³ ацетона и гомогенизируют 3 мин. при 10000 об/мин. Раствор (с осадком) фильтруют под вакуумом на воронке Бюхнера через бумажный фильтр в колбу вместимостью 250 см³. Осадок на фильтре промывают 50 см³ ацетона. Экстракт и промывную жидкость переносят в химический стакан, перемешивают, измеряют объем раствора. Отбирают ½

объема экстракта ботвы (эквивалентна 5 г образца) и $\frac{1}{2}$ объема экстракта корнеплодов (эквивалентна 10 г образца) и переносят в круглодонную колбу вместимостью 100 см 3 . Далее проводят очистку экстракта по п. 9.2.

9.2. Очистка экстракта перераспределением в системе несмешивающихся растворителей

Экстракт, полученный по пп. 9.1.2. и 9.1.3. и помещенный в круглодонную колбу, упаривают на ротационном вакуумном испарителе до водного остатка (5-10 см³) при температуре не выше 40°C. К водному остатку прибавляют 10 см³ деионизованной воды, 15 см³ насыщенного раствора хлорида натрия, перемещивают и переносят в делительную воронку вместимостью 100 см³. В воронку вносят 40 см³ хлористого метилена, интенсивно встряхивают в течение 2-х мин. После разделения фаз нижний органический слой фильтруют через слой безводного сульфата натрия в круглодонную колбу вместимостью 150 см³. Операцию экстракции водной фазы повторяют еще дважды, используя по 30 см³ хлористого метилена. Объединенную органическую фазу, пропущенную через слой сульфата натрия, упаривают досуха на ротационном вакуумном испарителе при температуре 30°C и подвергают дополнительной очистке на колонке с силикагелем и концентрирующем патроне Диапак С8 по пп.9.3, и 9.4.

9.3. Очистка экстракта на колонке с силикагелем

Сухой остаток в круглодонной колбе, полученный по п. 9.2., растворяют в 0,6 см³ ацетона, помещая в ультразвуковую ванну на 1 мин., добавляют 2,4 см³ гексана, перемешивают, вновь помещают в ультразвуковую ванну на 1 мин. Раствор наносят на колонку; подготовленную по п. 7.2. Колбу обмывают 3 см³ смеси гексан-ацетон (8:2, по объему), которые также наносят на колонку. Промывают колонку 30 см³ смеси гексан-ацетон (8:2, по объему) со скоростью 1-2 капли в сек., элюат отбрасывают. Метамитрон элюируют с колонки 30 см³ смеси гексан-ацетон (7:3, по объему), собирая элюат непосредственно в круглодонную колбу вместимостью 100 см³. Раствор упаривают досуха на ротационном вакуумном испарителе при температуре 30°C. Сухой остаток экстракта почвенного образца и корнеплодов растворяют соответственно в 5 и 1,5 см³ этилацетата, помещая в ультразвуковую ванну на 1 мин., и анализируют на содержание метамитрона по п. 9.5. Экстракт ботвы дополнительно очищают с помощью концентрирующего патрона Диапак С8.

9.4. Очистка на концентрирующем патроне Диапак С8

Сухой остаток экстракта ботвы, полученный по п.9.3., растворяют в 0.4 см³ ацетонитрила, помещая в ультразвуковую ванну на 1 мин., добавляют 1.6 см³

деионизованной воды, перемешивают, вновь помещают в ультразвуковую ванну на 1 мин. Раствор наносят на концентрирующий патрон, подготовленный по п.7.2., элюат отбрасывают. Метамитрон элюируют с патрона 6 см³ смеси ацетонитрил-вода (3:7, по объему), собирая элюат непосредственно в круглодонную колбу вместимостью 25 см³. Раствор упаривают досуха на ротационном вакуумном испарителе при температуре 40°C. Остаток в колбе растворяют в 1,5 см³ этилацетата, помещая в ультразвуковую ванну на 1 мин., и анализируют на содержание метамитрона по п.9.5.

9.5. Условия хроматографирования

Газовый хроматограф «Кристалл 2000М» с электронозахватным детектором с пределом детектирования не выше 2.82х10⁻¹⁴ г/с.

Колонка капиллярная кварцевая ZB-50, длина 30 м, внутренний диаметр 0,32 мм, толщина пленки 0,5 мкм, неподвижная фаза OV-17, фирма Phenomenex (США)

Температура термостата испарителя – 290° C, детектора – 300° C, термостата колонки (программа: от 200° C со скоростью 10° /мин до 270° C (10 мин.); со скоростью 10° /мин до 280° C (2 мин.)

Расход газов: газа-носителя (азот) — 3.0 см^3 /мин; поддувочного газа через детектор — 25 см^3 /мин

Деление потока: 1:2

Время удерживания метамитрона: 12 мин.15 сек

Объем вводимой пробы: 1 мм³.

Линейный диапазон детектирования: 0.1 - 2.0 нг.

Каждую анализируемую пробу вводят 3 раза и вычисляют среднюю высоту хроматографического пика метамитрона.

Образцы, дающие пики большие, чем стандартный раствор с концентрацией 1,0 мкг/см 3 , разбавляют этилацетатом.

10. Обработка результатов анализа

Содержание метамитрона рассчитывают методом абсолютной калибровки по формуле:

$$H_1 \times A \times V$$
 $X = -----$, где $H_0 \times m$

X - содержание метамитрона в пробе, мг/дм³; мг/кг;

Н1 - высота пика образца, мВ;

Но - высота пика стандарта, мВ:

- А концентрация стандартного раствора метамитрона, мкг/см³;
- V объем экстракта, подготовленного для хроматографирования, см³;
- m масса анализируемой части образца (см³, г) / для воды 100 см^3 , для ботвы 5 г, для почвы и корнеплодов 10 г/.

11. Проверка приемлемости результатов параллельных определений

За результат анализа принимают среднее арифметическое результатов двух параплельных определений, расхождение между которыми не превышает предела повторяемости (1):

$$\frac{2 \cdot |X_1 - X_2| \cdot 100}{(X_1 + X_2)} \le r \tag{1},$$

где X_1 , X_2 - результаты параллельных определений, мг/кг (дм³);

r- значение предела повторяемости (таблица 1), при этом $r=2.8\sigma_r$.

При невыполнении условия (1) выясняют причины превышения предела повторяемости, устраняют их и вновь выполняют анализ.

12. Оформление результатов

Результат анализа представляют в виде:

$$(\overline{X} \pm \Delta)$$
 мг/кг (дм³) при вероятности P= 0.95,

где X - среднее арифметическое результатов определений, признанных приемлемыми, мг/кг (дм³);

 Δ -граница абсолютной погрешности, мг/кг (дм³);

$$\Lambda = \delta * X / 100.$$

- δ граница относительной погрешности методики (показатель точности в соответствии с диапазоном концентраций, таблица 1), %.
- В случае, если содержание компонента менее нижней границы диапазона определяемых концентраций, результат анализа представляют в виде:

"содержание вещества в пробе «менее нижней границы определения»
менее 0.01 мг/дм³ для воды*, менее 0,05 мг/кг для почвы**, менее 0,03 мг/кг для
ботвы***, менее 0,015 мг/кг для корнеплодов****.

- * 0.01 мг/дм³ предел обнаружения для воды,
- ** 0,05 мг/кг предел обнаружения для почвы,
- *** 0,03 мг/кг предел обнаружения для ботвы,
- **** 0,015 мг/кг предел обнаружения для корнеплодов.

13. Контроль качества результатов измерений

Оперативный контроль погрешности и воспроизводимости измерений осуществляется в соответствии с ГОСТ Р ИСО 5725-1-6-2002 « Точность (правильность и прецизионность) методов и результатов измерений».

- 13.1.Стабильность результатов измерений контролируют перед проведением измерений, анализируя один из градуировочных растворов.
- Плановый внутрилабораторный оперативный контроль процедуры выполнения анализа проводится с применением метода добавок.

Величина добавки C_a должна удовлетворять условию:

$$C_o = \Delta_{o,\overline{X}} + \Delta_{o,\overline{X'}},$$

где $\pm \Delta_{x,\overline{x}}(\pm \Delta_{x,\overline{x'}})$ — характеристика погрешности (абсолютная погрешность) результатов анализа, соответствующая содержанию компонента в испытуемом образце (расчетному значению содержания компонента в образце с добавкой соответственно) мг/кг (дм³), при этом:

$$\Delta_n = \pm 0.84 \Delta$$

где Δ- граница абсолютной погрешности, мг/кг (дм³);

$$\Delta = \delta *X/100.$$

 δ - граница относительной погрешности методики (показатель точности в соответствии с диапазоном концентраций, таблица 1), %.

Результат контроля процедуры К, рассчитывают по формуле:

$$K_{\kappa} = \overline{X'} - \overline{X} - C_{\lambda},$$

где $\overline{X'}$, \overline{X} , C_{δ} - среднее арифметическое результатов параллельных определений (признанных приемлемыми по п.11) содержания компонента в образце с добавкой, испытуемом образце, концентрация добавки, соответственно, мг/кг (дм³);

Норматив контроля К рассчитывают по формуле

$$K = \sqrt{\Delta_{a,\overline{X'}}^2 + \Delta_{a,\overline{X'}}^2}$$

Проводят сопоставление результата контроля процедуры (K_{κ}) с нормативом контроля (K).

Если результат контроля процедуры удовлетворяет условию

$$|K_{\kappa}| \le K, \tag{2}$$

процедуру анализа признают удовлетворительной.

При невыполнении условия (2) процедуру контроля повторяют. При повторном невыполнении условия (2) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

13.3. Проверка приемлемости результатов измерений, полученных в условиях воспроизводимости:

Расхождение между результатами измерений, выполненных в двух разных пабораториях, не должно превышать предела воспроизводимости (R)

$$\frac{2 \cdot |X_1 - X_2| \cdot 100}{(X_1 + X_2)} \le R \tag{3}$$

где X_1, X_2 — результаты измерений в двух разных лабораториях, мг/кг (дм³);

R — предел воспроизводимости (в соответствии с диапазоном концентраций, таблица 1), %.

14. Разработчики

Дубовая Л.В.; Микитюк О.Д., к.б.н.; Назарова Т.А., к.б.н.; Макеев А.М., к.б.н.

ГНУ ВНИИ фитопатологии, 143050, Московская обл., п/о Большие Вяземы, тел. 592-92-20.

Подпись руки Дубовой Л.В., Микитюка О.Д., Назаровой Т.А. и Макеева А.М. заверяю

Зав. канцелярией ВНИЙФ