ГОСУДАРСТВЕННОЕ САНИТАРНО-ЭПИДЕМИОЛОГИЧЕСКОЕ НОРМИРОВАНИЕ РОССИЙСКОЙ ФЕДЕРАЦИИ

БОРНИК

МЕТОДИЧЕСКИХ ДОКУМЕНТОВ,

НЕОБХОДИМЫХ ДЛЯ ОБЕСПЕЧЕНИЯ
ПРИМЕНЕНИЯ ФЕДЕРАЛЬНОГО ЗАКОНА

ОТ 12.06.08 №88-Ф3

«Технический регламент на молоко и молочную продукцию»

Часть 5

MOCKBA 2009

Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека

Сборник

методических документов, необходимых для обеспечения применения Федерального закона от 12 июня 2008 г. № 88-ФЗ «Технический регламент на молоко и молочную продукцию»

Часть 5

ББК 51.23 С23

С23 Сборник методических документов, необходимых для обеспечения применения Федерального закона от 12 июня 2008 г. № 88-ФЗ «Технический регламент на молоко и молочную продукцию».—М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2009.—66 с.

ISBN 5-7508-0771-1

В сборник включены методические документы, содержащие правила и методы исследований (испытаний) и измерений, а также правила отбора образцов для проведения исследований (испытаний) и измерений, в соответствии с постановлением Главного государственного санитарного врача Российской Федерации Г. Г. Онищенко от 08.12.2008 № 67.

ББК 51.23

ISBN 5-7508-0771-1

[©] Роспотребнадзор, 2009

[©] Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2009

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Определение остаточных количеств ивермектина в печени, почках, мясе, жире сельскохозяйственных животных и молоке методом высокоэффективной жидкостной хроматографии

Методические указания МУК 4.1.1821---03

- 1. Подготовлены: Федеральным научным центром гигиены им. Ф. Ф. Эрисмана (проф. Юдина Т. В.), Московской сельскохозяйственной академией им. К. А. Тимирязева (проф. Калинин В. А), при участии Департамента Госсанэпилналнора Миналрава России (гл. специалист Веселов А. П.).
- 2. Методические указания рекомендованы к утверждению Комиссией по государственному санитарно-эпидемиологическому нормированию при Минздраве России (прот. № 20 от 2 декабря 2003 г.).
- 3. Утверждены Главным государственным санитарным врачом Российской Федерации, Первым заместителем Министра здравоохранения Российской Федерации, академиком РАМН Г. Г. Онищенко 18 декабря 2003 г.
 - 4. Введены впервые.

УТВЕРЖЛАЮ

Главный государственный санитарный врач Российской Федерации, Первый заместитель Министра здравоохранения Российской Федерации

Г. Г. Онишенко

18 декабря 2003 г.

Дата введения: 1 апреля 2004 г.

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Определение остаточных количеств ивермектина в печени, почках, мясе, жире сельскохозяйственных животных и молоке методом высокоэффективной жидкостной хроматографии

Методические указания МУК 4.1.1821—03

Вводная часть

Настоящие методические указания устанавливают метод высокоэффективной жидкостной хроматографии для определения в печени, почках, мясе, жире сельскохозяйственных животных и молоке массовой концентрации ивермектина в диапазонах 0,001—0,02 мг/кг (печень, почки, мясо, молоко); 0,002—0,04 мг/кг (жир).

Ивермектин – действующее вещество ветеринарных препаратов: ЦЕВАМЕК 1 % ИР, фирма-производитель «CEVA Sante Animate»; ГАНАМЕКТИН, фирма-производитель «Invesa»;

ИВОМЕК 1 % ИР, ИВОМЕК Плюс ИР, фирма-производитель «Мериал».

Ивермектин – смесь компонентов H_2B_{1a} и H_2B_1 Содержание компонента H_2B_{1a} и не менее 90 %.

Компонент H_2B_{1a} — (2aE,4E,8E)-(5 'S,6S, 'R,7S,11R,13R,15S,17aR,20R, 20aR,20bS)-20,20b-дигидрокси-5',6,8,19-тетраметил-7-[[(3-О-метил-4-0-(3-О-метил-2,6-диде-окси- α -L-арабино-гексапиранозил)-2,6-диде-окси- α -L-арабино-гексапиранозил]-окси]-6'-[(1S)-1-метилпропил]-3',4',5',6,6',7,10,11,14, 15,17a,20,20a-,20b-тетрадека-гидроспиро[11,15-метано-2H, 13H, 17H-фуро[4, 3,2pq][2,6]бензодиокса-циклоокта-децен-13,2'-[2H] пиран]-17-он (или 5-О-деметил-22,23-дигидроавермектин A_{1a}).

Компонент H_2B_{16} — (2aE,4E,8E)-(5'S,6S,'R,7S,11R,13R,15S,17aR,20R, 20aR,20bS)-20,20b-дигидрокси-5',6,8,19-тетраметил-6'-(1-метилэтил)-7-[[(3-О-метил-4-О-(3-О-метил-2,6-дидеокси- α -L-арабино-гексапиранозил)-2,6-дидеокси- α -L-арабино-гексапиранозил]-окси]-3',4',5',6,6',7,10,11,14,15, 17a,20,20a-,20b-тетрадека-гидроспиро[11,15-метано-2H,-13H,17H- ϕ ypo [4,3,2pq][2,6]бензодиокса-циклоокта-децен-13,2'-[2H]пиран]-17-он (или 25-(1-метилэтил)-5-О-диметил)-25-де(1-метилпропил)-22,23-дигидроавермектин A_{1a}).

Содержание компонента Н₁В₁₈ не менее 90 %.

Структурная формула не приводится.

Компонент	R	Эмпирическая формула	Молекулярная масса
H_2B_{1a}	CH _{H2} -CH _{H3}	$C_{48}H_{74}O_{14}$	875
H_2B_{1b}	CH₃	$C_{47}H_{72}O_{14}$	861

Ивермектин — кристаллический порошок, без запаха, цвет от белого до желтовато-белого. Насыпная плотность от 1,1 до 1,3 г/см³. Практически нерастворим в воде (около 4 мкг/мл), алифатических углеводородах и циклогексане. Растворим в этиловом спирте, хорошо растворим в метиленхлориде, метилэтилкетоне, пропиленгликоле, полиэтиленгликоле. Ивермектин получают путем селективного каталитического восстановления абамектина, который в свою очередь является продуктом жизнедеятельности почвенных организмов Streptomyces avermitilis.

Ивермектин не имеет определенной точки плавления, при нагревании обугливается. Ввиду очень слабой растворимости в воде стабильность водных растворов ивермектина не изучена.

Краткая токсикологическая характеристика

Ивермектин обладает нервно-паралитическим действием. ЛД₅₀ для лабораторных животных при однократном пероральном введении 15—60 мг/кг м.т.

Данные о максимально допустимом уровне (MRL) ивермектина в тканях и органах сельскохозяйственных животных в соответствии с рекомендациями Европейского комитета ветеринарных продуктов и Всемирной организации здравоохранения (1998) представлены в таблице 1.

Таблица 1

зынтовиЖ	Ткани, органы	Максимально допустимый уровень
Крупный рогатый скот	Мышцы*	0,01 мг/кг
	Печень	0,1 мг/кг
Γ	Жир	0,04 мг/кг
	Молоко*	0,005 мг/дм ³
Свиньи, овцы	Мышцы*	0,01 мг/кг
	Печень	0,015 мг/кг
	Жир	0,02 мг/кг

^{*} Рекомендации Объединенного совещания ФАО/ВОЗ по остаточным количествам пестицидов в продуктах питания, 20—29 сентября 2000 г.

Область применения препарата

Ивермектин обладает инсектицидной, акарицидной и нематоцидной активностью. Антибактериальной и антигрибковой активности не обнаружено. Ивермектин рекомендуется к применению в качестве антипаразитарного и антигельминтного препарата для сельскохозяйственных животных (свиней, крупного и мелкого рогатого скота).

Гигиенические нормативы в России не установлены.

1. Метрологические характеристики метода

Метрологические характеристики метода представлены в табл. 2 и 3.

Таблица 2 Метрологические параметры

Анализируемый объект		Метрологичес	кие параме	кие параметры, Р = 0,95, п = 20		
	предел обнару- жения, мг/кг	диапазон определяемых концентра- ций, мг/кг	среднее значение определе- ния, %	стандартное отклонение, S, %	доверительный интервал среднего результата, %	
Печень	0,001	0,0010,02	81,36	2,27	3,31	
Почки	0,001	0,0010,02	81,31	3,06	4,46	
Мясо	0,001	0,0010,02	82,69	3,81	5,55	
Жир свиной	0,002	0,0020,04	79,99	3,92	5,71	
Молоко	0,001	0,0010,02	91,30	2,80	4,08	

Таблица 3
Полнота извлечения ивермектина из проб печени, почек, мяса, жира и молока сельскохозяйственных животных (5 повторностей для каждой концентрации)

Среда	Внесено ивермектина мг/кг	Обнаружено ивермектина мг/кг	Полнота извлечения, %
Печень свиная	0,001	0,0008073 ± 0,00006	80,73
	0,002	0,0016324 ± 0,00009	81,62
	0,01	0,008186 ± 0,00019	81,86
	0,02	0,016248 ± 0,00054	81,24
Почки свиные	0,001	0,0008124 ± 0,00007	81,24
	0,002	0,0016164 ± 0,00010	80,82
	0,01	0,008108 ± 0,00016	81,08
	0,02	0,016418 ± 0,00062	82,09
Мясо	0,001	0,0008385 ± 0,00006	83,85
	0,002	0,0016490 ± 0,00010	82,45
	0,01	0,008241 ± 0,00017	82,41
	0,02	0,016412 ± 0,00060	82,06
Жир свиной (са- ло)	0,002 0,004 0,02 0,04	0,0015934 ± 0,00014 0,0031968 ± 0,00022 0,016088 ± 0,00085 0,031980 ± 0,00142	79,67 79,92 80,44 79,95
Молоко	0,001	0,0009060 ± 0,00005	90,60
	0,002	0,0018316 ± 0,00008	91,58
	0,01	0,009174 ± 0,00014	91,74
	0,02	0,018260 ± 0,00047	91,30

2. Метод измерений

Методика основана на определении вещества с помощью высокоэффективной жидкостной хроматографии (ВЭЖХ) с флуориметрическим детектором после экстракции из анализируемой пробы молока, органов и тканей сельскохозяйственных животных ацетонитрилом, очистки экстракта перераспределением между двумя несмешивающимися фазами. Экстракты органов и тканей сельскохозяйственных животных подвергают дополнительной очистке на концентрирующем патроне с флоризилом.

Количественное определение проводится методом абсолютной калибровки.

3. Средства измерений, вспомогательные устройства, реактивы и материалы

3.1. Средства измерений

Жидкостный хроматограф с флуориметрическим детектором.

с переменной длиной волны Номер Госреестра

(фирмы Perkin-Elmer, США) 15945—97

Весы аналитические ВЛА-200 ГОСТ 24104

Весы лабораторные общего назначения, с наибольшим пределом взвещивания до 500 г и пре-

делом допустимой погрешности ± 0.038 г ГОСТ 7328

Колбы мерные вместимостью 50, 100 и 1000 см³ ГОСТ 1770

Пипетки градуированные 2-го класса

точности вместимостью 1,0, 2,0, 5,0, 10 см³ ГОСТ 29227

Пипетки с одной меткой 2-го класса точности

вместимостью 15 см³ ГОСТ 29169

Пробирки градуированные вместимостью

5 или 10 cm³ ГОСТ 1770

Цилиндры мерные 2-го класса точности вместимостью 10, 25, 50, 100, 200, 500 и 1000 см³ ГОСТ 1770

Допускается использование средств измерения с аналогичными или лучшими характеристиками.

3.2. Реактивы

Ивермектин с содержанием компонента $H_2B_{1a} >= 90,0 \%$ («INVESA Internacional», S.A., Испания)

MVK 4 1 1821---03

Ацетонитрил для хроматографии, хч ТУ 6-09-4326-76 Вода бидистиллированная, деионизованная или перегнанная над КМ"О4 **FOCT 6709** н-Гексан. хч ТУ-6-09-3375 **FOCT 6995** Метиловый спирт (метанол), хч N-метилимидазол, puriss. for DNA synthesis, ≥ 99 %, Fluka Трифторуксусный ангидрид. purum; \geq 98,0 % (GC), Fluka Допускается использование реактивов иных производителей с аналогичной или более высокой квалификацией.

3.3. Вспомогательные устройства, материалы

Аллонж прямой с отводом для вакуума (для работы с концентрирующими патронами) ТУ 64-1-2851---78 Аппарат для встряхивания типа АВУ-6с Бумажные фильтры «красная лента», обеззоленные ТУ 6-09-2678—77 Баня ультразвуковая фирмы Донау (Швейцария) Воронки делительные вместимостью 50 и 250 см³ **ΓΟCT 25336** Воронки конусные диаметром 30-37 и 60 мм **ΓΟCT 25336** Гомогенизатор Груша резиновая Колбы плоскодонные вместимостью 200---250 см³ **ΓΟCT 9737** Колбы круглодонные на шлифе вместимостью 10, 100 и 250 см³ **ΓΟCT 9737** Мембранные фильтры капроновые диаметром 47 мм **FOCT 10696** Насос водоструйный Патроны для твердофазной экстракции Florisil Sep Pak (Waters, CIIIA) Ротационный вакуумный испаритель ИР-1М или ротационный вакуумный испаритель В-169 фирмы Висні, Швейцария TY 25-11-917---74 Стаканы химические вместимостью 100, 400 и 1 000 см³ ΓOCT 25336

Стекловата Стеклянные палочки Установка для перегонки растворителей Набор для фильтрации растворителей через мембрану Хроматографическая колонка стальная длиной 25 см, внутренним диаметром 4,0 мм, содержащая Кромасил 100 С18, зернением 7 мкм Шприц для ввода образцов для жидкостного хроматографа вместимостью 50—100 мм³ Шприц медицинский с разъемом Льюера **FOCT 22090** Допускается применение хроматографических колонок и другого оборудования с аналогичными или лучшими техническими характеристиками.

4. Требования безопасности

- 4.1. При работе с реактивами соблюдают требования безопасности, установленные для работ с токсичными, едкими, легковоспламеняющимися веществами по ГОСТ 12.1005.
- 4.2. При выполнении измерений с использованием жидкостного хроматографа соблюдают правила электробезопасности в соответствии с ГОСТ 12.1.019 и инструкцией по эксплуатации прибора.

5. Требования к квалификации операторов

К выполнению измерений допускают специалистов, имеющих квалификацию не ниже лаборанта-исследователя, с опытом работы на жидкостном хроматографе.

6. Условия измерений

При выполнении измерений соблюдают следующие условия:

- процессы приготовления растворов и подготовки проб к анализу
- проводят при температуре воздуха (20 ± 5) °C и относительной
- влажности не более 80 %;
- выполнение измерений на жидкостном хроматографе проводят в условиях, рекомендованных технической документацией к прибору.

7. Подготовка к выполнению измерений

Выполнению измерений предшествуют следующие операции: очистка органических растворителей (при необходимости), приготовление растворов, подвижной фазы для ВЭЖХ, кондиционирование хромато-

графической колонки, установление градуировочной характеристики, подготовка патронов для очистки экстрактов, проверка хроматографического поведения вещества на патронах для твердофазной экстракции.

7.1. Подготовка органических растворителей 7.1.1. Очистка ацетонитрила

Ацетонитрил кипятят с обратным холодильником над пентоксидом фосфора не менее 1 ч, после чего перегоняют, непосредственно перед употреблением ацетонитрил повторно перегоняют над прокаленным карбонатом калия.

7.1.2. Очистка Н-гексана

Растворитель последовательно промывают порциями концентрированной серной кислоты до тех пор, пока она не перестанет окрашиваться в желтый цвет, далее водой до нейтральной реакции промывных вод, перегоняют над поташом.

7.2. Подготовка подвижной фазы для ВЭЖХ

В мерную колбу вместимостью 1000 см³ помещают 980 см³ метанола, добавляют 20 см³ бидистиллированной или деионизированной воды, перемешивают, фильтруют и дегазируют.

7.3. Кондиционирование хроматографической колонки

Промывают колонку подвижной фазой (приготовленной по п. 7.2) при скорости подачи растворителя 1,7 см³/мин до установления стабильной базовой линии.

7.4. Приготовление реактива для дериватизации

Смешивают трифторуксусный ангидрид и свежеперегнанный ацетонитрил в объеме 1 : 2. Реактив годен к употреблению в течение рабочего дня.

7.5. Приготовление градуировочных растворов

7.5.1. Исходный раствор ивермектина для градуировки (концентрация 100 мкг/см³). В мерную колбу вместимостью 100 см³ помещают 0,0100 г ивермектина, растворяют в 50—70 см³ метанола, доводят метанолом до метки, тщательно перемешивают. Раствор хранится в морозильной камере в течение месяца.

Растворы № 1—5 готовят объемным методом путем последовательного разбавления исходного стандартного раствора.

7.5.2. Раствор № 1 ивермектина для градуировки (концентрация 1 мкг/ см³). В мерную колбу вместимостью 100 см³ помещают 1 см³ исходного стандартного раствора ивермектина концентрацией 100 мкг/см³ (п. 7.5.1), разбавляют метанолом до метки. Раствор хранится в морозильной камере в течение 10 дней.

Этот стандартный раствор используют для приготовления проб с внесением при оценке полноты извлечения ивермектина из исследуемых образцов.

7.5.3. Рабочие растворы № 2—5 ивермектина для градуировки (концентрация 0,005—0,1 мкг/см³). В 5 мерных колб вместимостью 100 см^3 помещают по 0,5, 1,0, 2,5, 5,0 и $10,0 \text{ см}^3$ стандартного раствора № 1 с концентрацией 1 мкг/см³ (п. 7.5.2), доводят до метки ацетонитрилом, тщательно перемешивают, получают рабочие растворы № 2—5 с концентрацией ивермектина 0,005, 0,01, 0,025, 0,05 и 0,10 мкг/см³ соответственно. Растворы хранятся в морозильной камере не более недели.

7.6. Установление градуированной характеристики

Градуировочную характеристику, выражающую зависимость площади пика (отн. единицы) от концентрации ивермектина в растворе (мкг/см³), устанавливают методом абсолютной калибровки по 5 растворам флуорогенного производного ивермектина для градуировки.

Для построения градуировочной характеристики в градуировочные пробирки вместимостью 5 см³ вносят по 1 см³ каждого из 5 рабочих растворов ивермектина № 2—5, прибавляют по 0,1см³ 1-N-метилимидазола, перемешивают. Смесь охлаждают до 0—5 °C, помещая пробирки в ледяную баню, добавляют по каплям 0,3 см³ реактива для дериватизации (п. 7.4), перемешивают и выдерживают 2 ч при комнатной температуре.

В инжектор хроматографа вводят по 20 мм³ каждого градуировочного раствора и анализируют в условиях хроматографирования по п. 9.4. Осуществляют не менее 3 параллельных измерений.

7.7. Подготовка патрона для очистки экстрактов

Патрон для твердофазной экстракции устанавливают на аллонж с прямым отводом для вакуума*, сверху в патрон вставляют шприц с разъемом Льюера объемом не менее 10 см³, используемый в качестве емкости для элюента.

Концентрирующий патрон промывают 5 см 3 метанола, высушивают пропусканием воздуха (с использованием вакуума) в течение 5 мин. Затем через патрон пропускают 5 см 3 гексана. Процедуру проводят с

использованием вакуума, скорость потока растворов через патрон не должна превышать 5 см^3 /мин, при этом нельзя допускать высыхания поверхности патрона.

* Примечание. В отсутствии специального аллонжа, жидкость продавливают через патрон с помощью шприца, скорость продавливания раствора не должна превышать 1—2 капли в секунду.

8. Отбор проб

Отбор продуктов питания осуществляется в соответствии с требованиями ГОСТ на исследуемые продукты: ГОСТ 7269—79 «Мясо», ГОСТ 3622—68 «Молоко и молочные продукты».

Отобранные образцы продуктов герметично упаковывают в полиэтиленовые мешки, стеклянные банки с притертыми крышками. Образцы анализируют непосредственно после отбора проб или хранят в морозильной камере при -20 °C (допускается хранение до 2 мес.).

Непосредственно перед анализом образцы размораживают, пробы органов и тканей массой 200—300 г тщательно измельчают с использованием гомогенизатора. Пробу гомогенизированного образца печени, почек и мяса массой 10 г, жира массой 5 г, а также молока массой 5 г взвешивают на аналитических весах в плоскодонных колбах вместимостью 250 см³.

9. Выполнение определения

9.1. Экстракция

К пробе гомогенизированного образца (10 г печени, почек, мяса, 5 г жира и молока), помещенной в колбу вместимостью 250 см³, приливают 100 см³ ацетонитрила, тщательно перемешивают путем встряхивания, выдерживают на ультразвуковой бане 5 мин., помещают на встряхиватель на 30 мин., дополнительно выдерживают на ультразвуковой бане 5 мин. и снова помещают на встряхиватель на 30 мин.

Экстракты тканей и органов декантируют в центрифужные сосуды емкостью 100 см³ и центрифугируют при 4 °C со скоростью 3 000 об./мин в течение 10 мин, экстракту пробы молока дают отстояться. Прозрачную надосадочную жидкость переносят в делительную воронку вместимостью 250 см³, фильтруя ее через тампон из стекловаты, помещенный в конусную воронку. Добавляют 70 см³ гексана, интенсивно встряхивают в течение 1 мин. После полного разделения фаз нижний ацетонитрильный слой сливают в круглодонную колбу и упаривают досуха на ротационном вакуумном испарителе при температуре не более 40 °C. Сухой

остаток растворяют в смеси 14 см³ ацетонитрила и 56 см³ воды, помещая на ультразвуковую баню на 1 мин. Раствор переносят в делительную воронку вместимостью 250 см³, добавляют 70 см³ гексана, интенсивно встряхивают воронку в течение 1 мин. Верхний органический слой собирают в круглодонную колбу вместимостью 250 см³. Водно-ацетонитрильную фазу вновь переносят в делительную воронку и повторяют операцию экстракции, используя 70 см³ гексана.

Объединенную органическую фазу упаривают досуха на ротационном вакуумном испарителе при температуре не более 40 °C. Сухой остаток растворяют в 1 см³ ацетонитрила и подвергают дериватизации по п. 9.2.

9.2. Дериватизация

К ацетонитрильному раствору прибавляют 0,1 см³ 1-N-метилимидазола, перемешивают. Смесь охлаждают до 0—5 °C, помещая колбу в ледяную баню, добавляют по каплям 0,3 см³ реактива для дериватизации (п. 7.4), перемешивают и выдерживают 2 ч при комнатной температуре.

Дериватизованные экстракты проб молока анализируют в условиях хроматографирования по п. 9.3.

Дериватизованные экстракты проб почек, печени, мяса и жира подвергают дополнительной очистке по п. 9.3.

9.3. Очистка экстракта

Аликвоту раствора после дериватизации объемом 0,7 см³ переносят в градуированную пробирку вместимостью 5 см³, добавляют 5 см³ гексана, интенсивно встряхивают в течение 1 мин, верхний гексановый слой отбирают с помощью пипетки, перенося в стакан вместимостью 50 см³, операцию экстракции повторяют новой порцией гексана объемом 5 см³. Верхний гексановый слой также переносят в химический стакан, объединяя с первым экстрактом. Объединенный гексановый экстракт вносят на патрон для твердофазной экстракции Florisil Sep Pak, подготовленный по п. 7.7. Скорость прохождения раствора через патрон не должна превышать 1—2 капли в с. Элюат собирают непосредственно в круглодонную колбу.

Флуорогенное производное ивермектина дополнительно элюируют с патрона 5 см³ гексана, также объединяя элюат с первой порцией в круглодонной колбе. Раствор упаривают досуха при температуре не выше 35 °C. Остаток в колбе растворяют в 1,4 см³ ацетонитрила и анализируют на содержание ивермектина по п. 9.4.

9.4. Условия хроматографирования

Колонка стальная, длиной 25 см, внутренним диаметром 4,0 мм, содержащая Кромасил 100 C18, зернением 7 мкм

Температура колонки: комнатная

Подвижная фаза: метанол-вода (98 : 2 по объему)

Скорость потока элюента: 1,7 куб. см/мин.

Длина волны: возбуждение 364 нм

Эмиссия 470 нм

Показание аттенюатора: 64

Объем вводимой пробы: 20 мм³

Ориентировочное время выхода флуорогенного производного ивермектина: 11,1—11,5 мин.

Образцы, дающие пики большие, чем стандартный раствор ивермектина с концентрацией $0,005~{\rm mkr/cm}^3$, разбавляют ацетонитрилом.

10. Обработка результатов анализа

Содержание ивермектина в пробе рассчитывают по формуле:

$$X = \frac{(A \cdot K)V}{m}$$
, где

X – содержание ивермектина в пробе, мг/кг;

A — концентрация ивермектина, найденная по градуировочному графику, мкг/см³;

V – объем экстракта, подготовленного для хроматографирования, см 3 ;

m — масса анализируемого образца, г;

К – коэффициент пересчета, учитывающий объем реакционной смеси после дериватизации экстрактов проб, используемый для анализа, равный для молока – 1, печени, почек, мяса и жира – 2.

4. Разработчики

Юдина Т. В., д.б.н., проф., Федорова Н. Е., д.б.н., Волкова В. Н., к.х.н.

Федеральный научный центр гигиены им. Ф. Ф. Эрисмана (ФНЦГ им. Ф. Ф. Эрисмана).

141000, г. Мытищи Московской обл., ул. Семашко, д. 2, лаборатория аналитических методов контроля.

Телефон: (095) 586-1276.

Содержание

Радиационный контроль. Стронций-90 и цезий-137. Пищевые	
продукты. Отбор проб, анализ и гигиеническая оценка:	
MYK 2.6.1.1194—03	3
Определение остаточных количеств ивермектина в печени,	
почках, мясе, жире сельскохозяйственных животных и молоке	
методом высокоэффективной жидкостной хроматографии:	
MYK 4.1.1821—03	31
Инверсионно-вольтамперометрическое измерение концентрации	
цинка, кадмия, свинца и меди в пищевых продуктах и	
продовольственном сырье: МУК 4.1.1501—03	45

Сборник

методических документов, необходимых для обеспечения применения Федерального закона от 12 июня 2008 г. № 88-ФЗ «Технический регламент на молоко и молочную продукцию»

Часть 5

Технический редактор Г. И. Климова

Подписано в печать 12.03.09

Формат 60х88/16

Тираж 200 экз.

Печ. л. 4,25 Заказ 19

Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека 127994, Москва, Вадковский пер., д. 18/20

Оригинал-макет подготовлен к печати и тиражирован отделом издательского обеспечения Федерального центра гигиены и эпидемиологии Роспотребнадзора 117105, Москва, Варшавское п., 19а Отделение реализации, тел./факс 952-50-89