МЕТОДИЧЕСКИЕ УКАЗАНИЯ НА ОПРЕДЕЛЕНИЕ ВРЕДНЫХ ВЕЩЕСТВ В ВОЗДУХЕ

Выпуск XVI

на определение указания на определение временения водих в воздухе

министерство здравоохранения ссср

Mockba, 1980 r.

Сборник методических указаний состатием методической секцией по промишленносанитарной хими при проблемной комиссии
"Научние основы гигиени труда и профессиональной патологии".

Bunyck XVI

Настоящие методические указания распространяются на определение содержания вредних веществ в воздухе промышленных помещений при санитарном контроле.

Редакционная коллегия: Тарасов В.В., Бабина М.Д., Набиев М.Н., Дъякова Г.А., Оречкии В.Г.

YTHEPHIAD

Заместитель Главного государственного

санитарного врача СССР

".23" (1/2.1.1.1) 1980 r.

16 4.2 4.3 20

МЕТОДИЧЕСКИЕ УКАЗАНИЯ НА ФОТОМЕТРИЧЕСКОЕ ОПРЕДЕЛЕНИЕ ТЕТРАЦИКИНА В ВОЗДЕЖЕ

И.м. основания 444,4 И.м. хлоргирата 480,9

Антислотик тетрациклин имеет в своей основе полифункциональное гидронаўтаценовое ядро. Суммарная формула: $c_{22}H_{24} \times c_{20}$

Лечебный препарат выпускается в виде основания и солянокислой соли. И основание, и клоргидрат тетрациклина представляют собой келтие криставляютеские вещества с температурой плавления 170-173°С (основание) и 124°С (клоргидрат). Они корошо растворими в этиленгыг коле, пиридине, спиртах, кислотах и щелочах, куже растворими в органических растворителях. В отличие от основания, слабо растворителях в воде, клоргидрат обладает корошей растворимостыв.

В твердом состоянии препарат тетрациклина стабилен, не теряет активности в течение 2-3 лет и более.

I. Общая часть

- Определение основано на реакции тетрациклина со щелочър, с образованием изотетрациклина, имеющего максимум поглощения при 380 нм.
 - 2. Предел обнаружения 5 мкг в анализируемом объеме раствора.
 - 3. Предел обнаружения в воздухе 0,03 мг/м³ (расчетный).
 - 4. Погрешность определения + 5%.
 - 5. Диапазон измернемых концентраций $0.03 1.9 \, \text{мг/м}^3$
- 6. Определению не мешает присутствие клортетрациклина, олеандромицина, нистатина. Мешает присутствие окситетрациклина.
- 7. Предельно допустимая концентрация тетрациклина в воздухе $0.1 \text{ мг/м}^3.$
 - П. Реактиви и аппаратура.
 - 8. Применяемые реактивы и растворы

Тетрациклин, х.ч.

Стандартный раствор # I готовят растворением в мерной колбе емкостью 100 мл 0,01 г тетрациилина в 0,01 Н растворе соляной кислоти. Раствор устойчив 2 недели.

Стандартный раствор № 2 с содержанием 10 мкг/мл готовят разведением стандартного раствора № 1 в 0.01 н растворе соляной кислоти. Устойчив 3-4 дня.

Еджий натр, ГОСТ 4328-77, 5 н раствор, готовят на свехенрожиня-

Соляная кислота, ГОСТ ЗІІВ-67, О.ОІ и раствор

9. Применяемне посуда и прибори Аспирационное устройство

Фильтри АФА-ВП-20 или АФА-ВП-10

Патроны

Фильтр Шотта со стеклянной пористой пластинкой Колон мерине ГОСТ 1770-74, емкостью 100 и 1000 мл Пробирки градуированные на 10 мл Пинетки, ГОСТ 20292-74, емкостью I,2 и 5 мл с ценой деления 0,I и 0,0I мл

Пинетки Мора ГОСТ 20292-74 на 5 и 10 мм Стакани химические , ГОСТ I277-63 на 50 мм

Ш. Отбор проби воздуха

10. Воздух со скоростью 15-20 л/мин аспирируют через фильтр АФА-ВП-10 или АФА-В-20, укрепленный в патрон. Для определения 1/2 предельно допустимой концентрации отобрать 100 л воздуха. Срок кранения огобранных проб 2 года.

Описание определения

II. Фильтр переносят в стакан, заливают 10 мл 0,01 н раствора соляной кислоти и оставляют на 20-25 минут для растворения. Затем раствор с фильтром переносят в воронку со стеклянной пористой пластинкой и жидкость отсасывают под вакуумом.

В градуированные пробирки на 10 мл вносят 8 мл исследуемого раствора, добавляют 0,5 мл 5 Н раствора едкого натра, доводят до объема 10 мл 0,0I Н соляной кислотий и перемешивают.

Проби фотометряруют в течение 30 минут с момента добавления щелочи на спектрофотометре в киветах с толщиной слоя I см при длине волин 380 нм по сравнению с контролем, который готовят одновременно и аналогично пробам.

Содержание тетрациилина в анализируемом объеме определяют по предварительно построенному градуировочному градику, для построения которого готоват вкалу стандартов согласно таблице 18

Таблина 18

Шкала стандартов

Номер стандартов !	I	ī	2	ı	3	ı	4	í	5	1	6	1	7	1	8
Стандартный раст- вор № 2, мл	-		0,5		5,0		_				_		-		_
Стандартный раст- вор # I, мл	-		_		-		1,0		I,5		2,0		2,5	3	3,0
Раствор 0,01 Н соляной кислоти,мл	8,0		7,5		3,0	,	7,0		6,5		6,0	ļ	5,5	5	5,0
Содержание тетра-	0		5		50)	100		150		200	ì	250	;	300

Все пробирки шкали обрабатывают аналогично пробам. Устойчивость шкали стандартов 30 мин.

Концентрацию тетрациклина в мг/м³ воздуха (X) внчисляют по формуле: $X = \frac{y \cdot y}{y \cdot y_{ab}}$, где

У − общий объем пробы, мж

и – объем проби, взятий для анализа, мя

Уго - объем воздуха в л. взятый для анализа и приведенный к стандартным условиям по формуле (см. приложение I).

Приложение І

Приведение объема воздуха к стандартным условиям проводят по следущей формуле:

У_t - объем воздуха, отобранный для анализа, л

P - барометрическое давление, кПа (101,33 кПа=760 км рт.ст)

 \mathfrak{t}^{\bullet} – температура воздуха в месте отбора проби, ${}^{\mathsf{O}}$ С

Для удобства расчета V_{20} следует пользоваться таблицей коэфущиентов (приложение 2). Для приведения воздуха к стендартным условиям надо умножить V_{t} на соответствующий коэффициент.

для приведения объема воздуха к стандартным условиям: температура +20°G и атмосферное давление IOI,33 кПа

C	Дэвление Р, кПа										
	97,33	97,86	98,4	98,93	99,46	IUO	100,53	10I,06	101,33	101,83	102,40
J	1,1582	I,1646	1,1709	1,1772	1,1836	1,1699	1,1963	I,2026	1,2058	1,2122	1,2185
6	1,1393	1,1456	1,1519	I,158I	I,1644	I,I7U5	1,1768	1,1831	1,1862	I,1925	1,1986
5	1,1212	I,I274	1,1336	1,1396	I,I458	I,1519	1,1581	I,1643	I,1673	I,I735	1,1795
3	1,1036	1,1097	1,1158	1,1218	1,1278	I,I338	1,1399	1,1460	I,I490	1,1551	I, ISII
4	1,0866	1,0926	1,0986	I,1045	1,1105	I,II64	I,I224	I,I284	1,1313	I,I373	1,1432
)	1,0701	1,0760	1,0819	I,0877	1,0936	I,0994	I,I053	I,III2	1,1141	1,1200	1,1258
	1,0540	I,0599	I,0657	I,0714	I,0772	I,0829	1,0867	I,0545	I,0974	I,1032	1,1059
	1,0385	I,0442	1,0499	I,0556	1,0613	I,0669	1,0726	I,0784	1,0812	I,0869	1,0925
	1,0309	1,0366	1,0423	1,0477	1,0535	1,0591	1,0648	I,0705	I,0733	I,0789	1,0846
	1,0234	1,0291	1,0347	1,0402	I,0159	1,0514	1,0571	I,0627	I,0655	1,0712	1,0767
	1,0087	1,0143	1,0198	1,0253	I,0309	1,0363	1,0419	I,U475	1,0502	I,0557	1,0612
)	0,9944	0,9999	1,0054	1,0108	I,0I02	1,0216	1,0272	I,0326	1,0353	I,0407	1,0462
i	0,9806	0,9860	0,9914	0,9967	1,0021	I,0074	1,0128	1,0183	I,U209	1,0263	1,0316
3	U,967I	0,9725	0,9778	0,9830	0,9884	0,9936	0,9989	1,0043	I,0069	I,0122	1,0175
)	0,9605	0,9658	0,9711	0,9763	0,9816	0,9868	0,9921	0,9974	1,0000	I,0053	1,0105
2	0,9539	0,9592	0,9645	0,9696	0,9749	0,9800	0,9853	0,9906	0,9932	0,9985	1,0036
1	0,9475	0,9527	0,9579	0,9631	0,9683	0,9735	0,9787	0,9839	0,9865	0,9917	0,9968
;	0,9412	0,9464	0,9516	0,9566	0,9618	0,9669	0,9721	0,9773	0,9799	0,9851	0,9902
3	0,9349	0,9401	0,9453	0,9503	0,9555	0,9605	0,9657	0,9708	0,9734	0,9785	0,9836
j	0,9288	0,9339	0,9391	0,9440	0,9432	0,9542	0,9594	0,9645	0,9670	0,9723	0,9772

I	2	3	1 4	5	! 6	! 7	8	1 9	1 IO	1 II 1 II 1
+34	0,9167	0,9218	0,9268	0,9318	0,9368	0,9418	0,9468	0,9519	0,9544	0,9595 0,9644
+38	0,9049	0,9099	0,9149	0,9198	0,9248	0,9297	0,9347	0.9397	0,9421	0,9471 0,9520