Государственное санитарно-эпидемиологическое нормирование Российской Федерации

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Измерение концентраций диазинона в атмосферном воздухе населенных мест методом газожидкостной хроматографии

Методические указания МУК 4.1.2372—08

Издание официальное

Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Измерение концентраций диазинона в атмосферном воздухе населенных мест методом газожидкостной хроматографии

> Методические указания МУК 4.1. 2372-08

- И-37 Измерение концентраций диазинона в воздухе населенных мест методом газожидкостной хроматографии. Методические указания. М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2009. 14 с.
 - 1. Разработаны сотрудниками Федерального государственного унитарного предприятия Всероссийский научно-исследовательский институт химических средств защиты растений ФГУІІ «ВНИИХСЗР» (Т.В. Алдошина, Д.А. Соболева).
 - 2. Рекомендованы к утверждению Комиссией по санитарноэпиде-миологическому нормированию при Федеральной службе по надзору в сфере защиты прав потребителей и благополучия человека (протокол от 3 апреля 2008 г. № 1).
 - 3. Утверждены Руководителем Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главным государственным санитарным врачом Российской Федерации Г.Г. Онищенко 16 июня 2008 г.
 - 4. Введены в действие с 5 сентября 2008 г.
 - 5. Введены впервые.

ББК 51.21

Формат 60х88/16

Тираж 200 экз.

Печ. л. 1,0

Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека 127994, Москва, Вадковский пер., д. 18/20.

Тиражировано отделом издательского обеспечения Федерального центра гигиены и эпидемиологии Роспотребнадзора 117105, Москва, Варшавское ш., 19а Отделение реализации, тел./факс 952-50-89.

© Роспотребнадзор, 2009

© Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2009

УТВЕРЖДАЮ

Руководитель Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главный Государственный санитарный врач Российской Федерации

Г.Г. Онищенко

16 июня 2008 г.

Дата введения: 5 сентября 2008 г.

4.1. Методы контроля. Химические факторы

Измерение концентраций диазинона в воздухе населенных мест методом газожидкостной хроматографии

Методические указания МУК 4.1.2372-08

Настоящие методические указания устанавливают методику газожидкостной хроматографии для определения массовой концентрации диазинона в атмосферном воздухе в диапазоне $0,005-0,05 \text{ мг/м}^3$ при определении максимально-разовой концентрации и $0,00005-0,0005 \text{ мг/м}^3$ при определении средне-суточной концентрации диазинона.

Диазинон

Химическое название вещества по номенклатуре IUPAC O,O - диэтил O-(2-изопропил-6-метилпиримидин-4ил)дитиофосфат.

$$(CH_3)_2CH \xrightarrow{N} CH_3$$

$$CH_3$$

 $C_{12}H_{21}N_2O_3PS.$

Мол. масса 304,4

В чистом виде диазинон — бесцветное масло, $T_{\text{кип.}}$ 89°C. Давление паров при 20°C 1,1·10⁻² Па (8,4·10⁻⁵ мм рт. ст.).

Растворимость в воде при 25°C 40 мг/дм³. Хорошо растворим в ацетоне, хлороформе, ксилоле, бензоле, этаноле. Коэффициэнт распределения

H-октанол/вода Log K_{ow} – 3,3

Неустойчив по отношению к действию кислот и щелочей, в воде гидролизуется: $T_{0.5}$ (20°C) \approx 12 час (pH 3,1); 185 дней (pH 7,4); 6 дней (pH 10,4).

Разлагается при температуре выше 120°C.

Агрегатное состояние в воздухе – аэрозоль и пары.

Краткая токсикологическая характеристика

Относится к среднетоксичным препаратам. Острая оральная токсичность для крыс LD_{50} 300—400 мг/кг. Острая накожная токсичность для крыс LD_{50} >2150 мг/кг. Слабо раздражает глаза и кожу кроликов. Ингаляционная токсичность для крыс при 4-х часовой экспозиции LC_{50} -3,5 мг/л воздуха.

Область применения препарата

Диазинон - контактный инсектицид широкого спектра действия. Рекомендуется для борьбы с насекомыми-вредителями на большом числе сельскохозяйственных культур: сахарной свекле, картофеле, пшенице, кукурузе, капусте, луке, землянике. Применяются с нормой расхода по действующему веществу около 1 кг/га, двукратно.

ПДК диазинона в атмосферном воздухе населённых мест 0,01 мг/м³ максимально-разовая (1) и 0,0001 мг/м³ средне-суточная (2).

ПДК в воздухе рабочей зоны 0,2 мг/м3.

1. Погрешность измерений

Методика обеспечивает выполнение измерений с погрешностью, не превышающей \pm 25%, при доверительной вероятности 0,95.

2. Метод измерения

Измерение концентрации диазинона выполняют методом газожид-костной хроматографии с термоионным детектором.

Концентрирование диазинона проводят при последовательном пропускании через фильтр АФА-ВП-20 или АФА-ХА-20 и пенополиуретановый фильтр, помещённый в ножку держателя. Диазинон с фильтров извлекают гексаном.

Нижний предел измерения в анализируемом объеме пробы — 0,1 нг.

Нижний предел измерения в воздухе — 0,005 мг/м³ при определении максимально-разовой и 0,00005мг/м³ при определении средне-суточной концентрации. Средняя полнота определения 93,5%.

В предлагаемых условиях измерению не мешают компоненты, входящие в состав препаратов на основе диазинона. Метод селективен в присутствии других пестицидов.

Идентификацию анализируемого вещества проводят по времени удерживания, а количественное определение проводят методом соотношения со стандартом путем сравнения высоты пика рабочей пробы с высотой пика градуировочного раствора, высота которой наиболее близка к высоте пика рабочей пробы.

3. Средства измерений, вспомогательные устройства, реактивы и материалы

3.1. Средства измерений

Газожидкостной хроматограф "Цвет 500 М" с термоионным детектором (ТИД)

Весы аналитические ВЛА-200	TOCT 24104-2001
Микрошприцы на 10 мкл	ТУ 2.833.105
Линейка измерительная с ценой деления 1 мм или интегратор	ΓΟCT 17435-72
Аспирационное устройство с ротаметром для измерения расхода воздуха	ТУ 64-1-1081-73
Мерные колбы вместимостью 100 см ³	ΓΟCT 1770-74
Концентраторы грушевидные, вместимостью 50 см ³	ГОСТ 10394-75
Пробирки градуированные с пробками на шлифах вместимостью 5 см ³	ГОСТ 1770-74
Пипетки градуированные на 1, 2 и 5 см ³	ГОСТ 20292-74

MYK 4.1, 2372-08

Допускается использование средств измерения с аналогичными или лучшими характеристиками.

3.2. Вспомогательные устройства, материалы

Хроматографические колонки длиной 100 см, внутренним диаметром 3 мм Аэрозольные фильтры АФА-ВП-20 или АФА-ХА-20 Пенополиуретан ППУ ТУ 2254-153-04691277-95 Фильтродержатель Ротационный вакуумный испаритель ИР-1М. TY 25-11-917-76 Стеклянные палочки Резиновая груша Стаканы химические, вместимостью 50 см³, FOCT 25336-72 Колбы грушевидные на шлифе вместимостью 50 и 100 см³ ГОСТ 10394-72 Воронки конусные диаметром 30-37 мм **FOCT 25336-82** Колбы круглодонные на шлифе вместимостью 100 см3 FOCT-10394-82 Установка для перегонки растворителей Холодильник водяной обратный ГОСТ 10394-82 Делительные воронки на 1 дм³ **ΓΟCT 25336-82** Шкаф сушильный TY 64-1 -1411 -76 ТУ 64-1-2850-76 Баня водяная Насос водоструйный FOCT 10696-72

Допускается применение хроматографических колонок и другого оборудования с аналогичными или лучщими техническими характеристиками.

3.3. Реактивы

Диазинон, аналитический стандарт с содержанием д.в. 98,5 % (ВНИИХСЗР, Россия) или образец диазинона с установленным содержанием основного вещества не мечее 95%

Компрессор

	МУК 4.1. 2372-08
Гексан, х.ч.	ТУ 6-09-3375-78
Кислота серная х.ч., конц. и 10%-ный раствор	ΓΟCT 4204-77
Калий марганцовокислый, ч.д.а.	ΓΟCT 20490-75
Натрия гидроксид, х.ч.,10%-ный раствор	ΓΟCT 4328-77
Натрия сульфат, безводный, х.ч.	ΓΟCT 4166-76
Азот особой чистоты из баллона с редуктором	ГОСТ 9293-74
Водород газообразный из баллона с редуктором	ГОСТ 3022-80
или из генератора водорода	ТУ 51-940-80
Воздух из баллона с редуктором	ГОСТ 9010-80
или нагнетаемый компрессором.	
Хроматон N-AW-DMCS (0,16÷0,20 мм) с 3% OV-17,	Хемапол, Чехия
Хроматон N-AW-DMCS (0,16+0,20 мм) с 5%XE-60,	Хемапол, Чехия.

Допускается использование реактивов иных производителей с аналогичной или более высокой квалификацией.

4. Требования безопасности

При выполнении измерсний необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007, требования по электробезопасности при работе с электроустановками по ГОСТ 12.1.019, а также требования, изложенные в технической документации на газовый хроматограф.

Помещение должно соответствовать требованиям пожаробезопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009. Содержание вредных веществ в воздухе не должно превышать норм, установленных ГН 2.2.5.1313-03 «Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны». Организация обучения работников безопасности труда – по ГОСТ 12.0.004.

5. Требования к квалификации операторов

К выполнению измерений допускают специалистов, имеющих квалификацию не ниже лаборанта-исследователя, с опытом работы на газовом хроматографе. К проведению пробоподготовки допускают опе-

MVK 4.1. 2372-08

ратора с квалификацией «лаборант», имеющего опыт работы в химической лаборатории.

6. Условия измерений

При выполнении измерений соблюдают следующие условия:

процессы приготовления растворов и подготовки проб к анализу проводят при температуре воздуха (20±5)°С и относительной влажности не более 80%.

Выполнение измерений на газовом хроматографе проводят в условиях, рекомендованных технической документацией к прибору.

7. Подготовка к выполнению измерений

Выполнению измерений предшествуют следующие операции: очистка растворителей, подготовка хроматографической колонки, приготовление стандартных растворов, приготовление градуировочных растворов.

7.1. Очистка гексана

Гексан встряхивают в течение 20-30 мин с тремя порциями с концентрированной серной кислоты, взятой для каждой обработки в количестве 10% по объему. Встряхивание с серной кислотой следует производить на механической качалке в склянке с притертой пробкой, привязав хорошо пробку и завернув склянку в полотенце. После встряхивания с каждой порцией кислоты смеси дают отстояться, после чего отделяют нижний кислотный слой. Затем энергично встряхивают (в делительной воронке) с несколькими порциями концентрированного раствора перманганата калия в 10%-ой серной кислоте, пока цвет раствора не перестанет изменяться. Очищенный гексан промывают водой, 10%-ным раствором едкого натра, снова водой, высушивают безводным сульфатом натрия и перегоняют.

7.2. Подготовки газохроматографических колонок

Для газохроматографического анализа используют готовый товарный носитель хроматон N-AW-DMCS (0,16÷0,20 мм) с 3% OV-17 или хроматон N-AW-DMCS (0,16÷0,20 мм) с 5% XE-60. Хроматографическую колонку заполняют насадкой с подсоединением слабого вакуума. Достаточная плотность набивки обеспечивается равномерной загрузкой и постукиванием по колонке. Колонку с фазой 3% OV-17 кондицио-

нируют при скорости азота 35 см³/мин в режиме программирования температуры от 50 до 300°С со скоростью нагрева 2°С/мин, а затем в изотермическом режиме при температуре 300°С в течение 6÷8 час без подсоединения колонки к детектору. Колонку с фазой 5% XE–60 кондиционируют в при скорости азота 35см³/мин в режиме программирования температуры от 50 до 240°С со скоростью нагрева 2°С/мин, а затем в изотермическом режиме при температуре 240°С в течение 6÷8 час без подсоединения колонки к детектору.

Общую подготовку прибора к работе проводят согласно инструкции.

7.3. Условия хроматографирования

Измерения проводят при следующих режимных параметрах Газожидкостной хроматограф Цвет 500 М или аналогичный с термоионным детектором (ТИД). Хроматографические колонки длиной 100 см, внутренним диаметром 3 мм.

	Колонка 1	Колонка 2
Насадка колонки	3% OV-17 на хроматоне	5% XE-60 на хроматоне
	N-AW-DMCS (0,16÷0,20 mm)	N-AW-DMCS (0,16+0,20mm)
Длина и внутренний диаметр колонки	100 см × 3 мм	100 см × 3 мм
Рабочая шкала электрометра	64-10 ⁻¹⁰ мА	64 10 ⁻¹⁰ мА
Скорость протяжки ленты самописца см/мин	0,25	0,25
Скорость потока газа-носителя азота	35 см ³ /мин	35 см ³ /мин
Температура термостата колонки, °С	180	180
Температура испарителя, °С	210	210
Температура, детектора, °С	320	320
Абсолютное время удерживания	1 мин 54 сек	3 мин 5 сек
Объем вводимой пробы, мм ³	1-2	1-2
Линейный диапазон детектирования	0,1+1,0 нг	0,1÷1,0 нг

7.4. Приготовление стандартных растворов

7.4.1. Исходные стандартные растворы диазинона

Стандартный раствор диазинона в гексане с содержанием 100 мкг/см^3 (раствор № 1) и 1 мкг/см³ (раствор № 2).

Стандартный раствор № 1 готовят растворением 10 мг диазинона в гексане в мерной колбе на 100 см³. Для приготовления стандартного раствора № 2 из раствора № 1 пипеткой на 1 см³ отбирают 1 см³, переносят в мерную колбу вместимостью 100 см³ и доводят до метки гексаном. Стандартные растворы стабильны в течение 2 месяцев при условии хранения в холодильнике.

7.4.2. Приготовление стандартных растворов сравнения

Серию стандартных растворов сравнения готовят одновременно с рабочей пробой. Градуировочные растворы шкалы стандартов готовят в градуированных пробирках вместимостью 5 см³ с пробками на шлифах.

В пробирки градуированной пипеткой на 2 см³ последовательно вносят 0.2; 0.4; 0.8, и 2,0 см³ стандартного раствора № 2, что соответствует 0.2, 0.4, 0.8, и 2,0 мкг и доводят до 2 см³ гексаном. Пробирки закрывают пробками на шлифах и их содержимое аккуратно перемешивают. Полученные стандартные растворы содержат 0.1; 0.2; 0.4, и 1,0 мкг/см³.

Стандартные растворы стабильны при комнатной температуре в течение недели.

7.5. Приготовление фильтров из пенополиуретана

Фильтры вырезают из пластины пенополиуретана. Диаметр фильтров на 2,5-3 мм шире внутреннего диаметра ножки держателя фильтра, высота 2 – 2,5 мм. Фильтры помещают в стеклянный стакан, заливают ацетоном и тщательно отжимают стеклянной палочкой, сливают ацетон. Эту операцию ещё дважды повторяют ацетоном, а затем трижды гексаном. Промытые фильтры тщательно отжимают стеклянной палочкой, сливая следы растворителя и сущат на воздухе. Высущенные фильтры хранят в склянке с пришлифованной пробкой.

7.6. Отбор и хранение проб

Отбор проб проводят в соответствии с требованиями ГОСТ 17.2.4.02-81 ОПА «Общие требования к методам определения загрязняющих веществ в воздухе населенных мест».

7.6.1. Определение максимально-разовой концентрации

Воздух с объемным расходом 5 дм³/мин аспирируют последовательно через фильтр $A\Phi A$ – $B\Pi$ –20 или $A\Phi A$ –XA–20 и фильтр из полиуретана, помещенный в ножку держателя фильтра. Для измерения 0,5 ПДК следует отобрать 40 дм³ воздуха.

Фильтры с отобранными пробами, помещенные в полиэтиленовые пакеты, хранят в холодильной камере при температуре 4°C не более 5 дней.

7.6.2. Определение средне-суточной концентрации

Воздух с объемным расходом 5 дм³/мин аспирируют последовательно через фильтр АФА-ВП-20 или АФА-ХА-20 и фильтр из полиуретана, помещенный в ножку держателя фильтра. Для измерения 0,5 ПДК следует за сутки отобрать 2000 дм³ воздуха. Для этого воздух аспирируют в течении 20 мин 20 раз в сутки с интервалами 1 час ÷ 1 час 20 мин.

Фильтры с отобранными пробами, помещенные в полиэтиленовые пакеты, хранят в холодильной камере при температуре 4°C не более 5 лней.

8. Выполнение измерений

Фильтры с отобранной пробой пинцетом вынимают из фильтродержателя, помещают в стакан вместимостью 50 см³ и экстрагируют диазинон трижды 10 см³ гексана. Экстракты сливают в грушевидную колбу вместимостью 50 см³, отжимая каждый раз фильтры стеклянной палочкой. Объединенный экстракт концентрируют на ротационном вакуумном испарителе до объёма 2-3 мкл при температуре бани 50°C. Следы растворителя отдувают слабым током теплого воздуха.

К сухому остатку пипеткой добавляют 2 см³ гексана. Колбу закрывают пробкой на шлифе, и её стенки обмывают растворителем. В хроматограф вводят (для определения максимально-разовой концентрации) 1 мкл и 2 мкл (для определения средне-суточной концентрации) полученного раствора в двух повторностях, а затем в двух повторностях вводят стандартные растворы сравнения. Ввод проб осуществляется

микрошприцем через самоуплотняющуюся мембрану хроматографа. Скорость ввода и объем вводимых проб должны быть постоянным.

Хроматографирование проводят в условиях указанных в п. 7.6.

Качественное определение проводят по времени удерживания, а количественное — методом соотношения со стандартом путем сравнения высоты пика рабочей пробы с высотой пика стандартного раствора, которая наиболее близка к высоте пика рабочей пробы.

Перед анализом опытной пробы проводят хроматографирование холостой (контрольной) пробы- экстракта неэкспонированных фильтров.

9. Обработка результатов измерений

Содержание диазинона в воздухе (X) в мг/м 3 вычисляют по формуле:

$$X = \frac{C_{cm} \cdot V}{V_2 \cdot V_{20}} ,$$

где C_{cm} — количество стандарта, введенного в хроматограф, нг

V — общий объем рабочего раствора, см 3 ;

 V_a — объем аликвоты, вводимой в хроматограф, мкл;

 V_{20} объем воздуха, отобранный для анализа и приведенный к стандартным условиям (давление 760 мм.рт.ст., температура 20° C), дм³.

$$V_{20} = \frac{V_t \cdot 0,386 \cdot P}{(273+t)},$$

где V_i – объем воздуха, отобранный для анализа, дм³;

t – температура воздуха в месте отбора пробы, °С.

Р - барометрическое давление, мм. рт. ст.;

За результат анализа \overline{X} принимается среднее арифметическое результатов двух параллельных определений X_1 и X_2 $\overline{X} = (X_1 + X_2)/2$, расхождения между которыми не превышает значений норматива оперативного контроля сходимости (d) $|X_1 - X_2| < d$.

$$d = \frac{d_{omn} \cdot \overline{X}}{100}, \text{MT/M}^3,$$

где d — норматив оперативного контроля сходимости, мг/м³

 d_{omn} - норматив оперативного контроля сходимости, % (равен 10%)

Если при введении в хроматограф получаются слишком большие пики или происходит «зашкаливание», к рабочему раствору пипеткой добавляют замеренное количество гексана и анализируют более разбавленный раствор. Примечание: идентификация и расчет концентрации в пробах могут быть проведены с помощью программ обработки хроматографических данных с применением компьютера, включенного в аналитическую систему.

10. Оформление результатов измерений

Результат количественного анализа представляют в виде:

Результат количественного анализа \overline{X} (мг/м³), характеристика погрешности δ , Δ %, P=0.95 или $\overline{X}\pm\Delta$ мг/м³, P=0.95, где $\Delta=\frac{\delta\cdot\overline{X}}{100}\ ,\ \text{мг/м}^3.$

$$\Delta = \frac{\delta \cdot \bar{X}}{100}, \,_{M\Gamma/M}^{3}.$$

Результат измерений должен иметь тот же десятичный разряд, что и погрешность.

Если содержание вещества менее нижней границы диапазона определяемых концентраций, результаты анализа представляются в виде:

«содержание диазинона в максимально-разовой пробе атмосферного воздуха – менее 0.005 мг/м^3 »*

* - 0,005мг/м³ предел обнаружения диазинона при отборе 40 дм³ воздуха.

11. Контроль погрешности измерений

Оперативный контроль погрешности и воспроизводимости измерений осуществляется в соответствии с ГОСТ ИСО 5725-1-6.2002 «Точность (правильность и прецизионность) методов и результатов измерений».

12. Разработчики

Алдошина Т.В. ст.н.с., Соболева Д.А., к.х.н. ст.н.с. ФГУП «ВНИИХСЗР», 115088, Москва, Угрешская ул., д. 31. Тел. (495) 679-34-27.

13. Литературные источники

- 1. «Предельно-допустимые концентрации (ПДК) загрязняющих веществ в атмосферном воздухе населенных мест». ГН 2.1.6.1338-03, МЗО, Россия, 2003 г., стр. 32, № 327.
- 2. «Гигиенические нормативы содержания пестицидов в объектах окружающей среды» (Перечень), ГН 1.2.1323-03, МЗО, М., 2003, стр. 30, № 133.