Государственное санитарно-эпидемиологическое нормирование Российской Федерации

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАТОРЫ

ОПРЕДЕЛЕНИЕ ОСТАТОЧНЫХ КОЛИЧЕСТВ ПЕСТИЦИДОВ В ПИЩЕВЫХ ПРОДУКТАХ, СЕЛЬСКОХОЗЯЙСТВЕННОМ СЫРЬЕ И ОБЪЕКТАХ ОКРУЖАЮЩЕЙ СРЕДЫ

Сборник методических указаний МУК 4.1.2138—4.1.2151—06

Издание официальное

ББК 51.21 О37

- О37 Определение остаточных количеств пестицидов в пищевых продуктах, сельскохозяйственном сырье и объектах окружающей среды: Сборник методических указаний.—М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2009.—146с.
 - 1. Сборник подготовлен Федеральным научным центром гигиены им. Ф. Ф. Эрисмана (академик РАМН, проф. В. Н. Ракитский, проф. Т. В. Юдина); при участии специалистов Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека. Разработчики методов указаны в каждом из них.
 - 2. Рекомендованы к утверждению Комиссией по государственному санитарно-эпидемическому нормированию при Федеральной службе по надзору в сфере защиты прав потребителей и благополучия человека.
 - 3. Утверждены Главным государственным санитарным врачом Российской Федерации, Первым заместителем Министра здравоохранения Российской Федерации, академиком РАМН Г. Г. Онищенко.
 - 4. Введены впервые.

ББК 51.21

Формат 60х88/16

Печ. л. 9.25

Тираж 100 экз.

Тиражировано отделом издательского обеспечения Федерального центра гигиены и эпидемиологии Роспотребнадзора 117105, Москва, Варшавское ш., 19а Отделение реализации, тел./факс 952-50-89

Содержание

1. Методические указания по измерению концентраций 2,4-Д в атмосферном
воздухе населенных мест методом капиллярной газожидкостной хроматографии.
MYK 4.1.2138-064
2. Методические указания индоксакарба в воздухе рабочей зоны методом
капиллярной газожидкостной хроматографии МУК 4.1.2139-0614
3. Методические указания по определению остаточных количеств бромадиолона в
воде методом высокоэффективной жидкостной хроматографии. МУК 4.1.2140-0623
4. Методические указания по измерению концентраций манкоцеба в атмосферном
воздухе населенных мест методом газожидкостной хроматографии. МУК 4.1.2141-0634
5. Методические указания по измерению концентраций металаксила в воздухе рабочей
зоны, смывах с кожных покровов операторов и атмосферном воздухе населенных мест
методом капиллярной газожидкостной хроматографии. МУК 4.1.2142-0645
6. Методические указания по измерению концентраций МЦПА в атмосферном
воздухе населенных мест методом капиллярной газожидкостной хроматографии. МУК
4.1.2143-0656
7. Газохроматогрофическое определение 1-метоксипропан-2-ол ацетата в атмосферном
воздухе. МУК 4.1. 2144-06
8. Фотометрическое определение натрия перкарбоната в атмосферном воздухе.
МУК 4.1. 2145-06
9. Методические указания по газохроматографическому определению концентраций
1,1 диметилгидразина в почве. МУК 4.1. 2146-06
10. Методические указания по измерению концентраций хлорсульфурона
в атмосферном воздухе населенных мест методом газожидкостной хроматографии.
МУК 4.1, 2147-0694
11. Методические указания по измерению концентраций проквиназида
в воздухе рабочей зоны методом кашиллярной газожидкостной хроматографии.
МУК 4.1. 2148-06106
12. Методические указания по определению остаточных количеств пропаргита в воде
методом газожидкостной хроматографии. МУК 4.1. 2149-06114
13. Методические указания по измерению концентраций цимоксанила в воздухе
рабочей зоны, смывах с кожных покровов операторов и в атмосферном воздухе
населенных мест методом капиллярной газожидкостной хроматографии.
MYK 4.1. 2150-06126
14. Методические указания по измерению концентраций метомила в воздухе рабочей
зоны методом высокоэффективной жидкостной хроматографии. МУК 4.1.2151-06138

УТВЕРЖДАЮ

Руководитель Федеральной службы по надзору в сфере защиты прав потребителей и благополужия-человека

Главный государственный сайтарный врач

Российской Фенерации

Г.Г. Онищенко

2006 г.

Myk 4. K. 2488 de 4

Дата введения: Е в мария 208 7 г.

Методические указания

по измерению концентраций проквиназида в воздухе рабочей зоны методом капиллярной газожидкостной хроматографии

Настоящие методические указания устанавливают метод капиллярной газожидкостной хроматографии для измерения массовой концентрации проквиназида в воздухе рабочей зоны в диапазоне $0.2 - 2.0 \text{ мг/м}^3$.

Проквиназид - действующее вещество препарата ТАЛЕНДО, КЭ (200 г/л) фирма производитель «Дю Пон».

6-Иод-3-пропил-2-пропокси-3H-хиназолин-4-он (IUPAC)

C₁₄H₁₇ IN₂O₂

Мол. масса 372.2

Проквиназид — твердое вещество белого цвета без запаха. Температура плавления: $61.5 - 62^{0}$ С. Давление паров: $9*10^{.5}$ Па (20^{0} С). Плотность 1.57 г/см³ (20^{0} С). Растворимость в воде 0.93 мг/дм³ (рН 7). Растворимость в органических растворителях (в г/дм³): ацетон, дихлорметан, диметилформамид, н-гексан, н-октанол, о-ксилол, этилацетат > 250, ацетонитрил — 154, метанол — 136. Коэффициент распределения н-октанол/вода: $K_{OW} \log P = 5.48$.

Проквиназид гидролитически стабилен при pH 4, 7 и 9; быстро разлагается после воздействия света путем водного фотолиза: DT₅₀ 0,03 дня.

Краткая токсикологическая характеристика:

Острая пероральная токсичность проквиназида (LD₅₀) для крыс сампов — 4864 мг/кг, для крыс самок - более 2000 мг/кг; острая дермальная токсичность проквиназида (LD₅₀) для крыс - более 5000 мг/кг, острая ингаляционная токсичность (LC₅₀) - более 5200 мг/ $м^3$.

Область применения препарата

Препарат ТАЛЕНДО, КЭ (200 г/л), д.в. проквиназид — инсектицид для борьбы с иодиумом на виноградниках в период вегетации.

Рекомендуемый ОБУВ проквиназида в воздухе рабочей зоны 1,0 мг/м³.

1. Погрешность измерений

Методика обеспечивает выполнение измерений с погрешностью, не превышающей \pm 25%, при доверительной вероятности 0.95.

2. Метод измерений

Измерения концентраций проквиназида выполняют методом капиллярной газожидкостной хроматографии (ГЖХ) с термоионным детектором (ТИД).

Концентрирование проквиназида из воздуха осуществляют на бумажный фильтр "синяя лента", экстракцию с фильтра проводят ацетоном.

Нижний предел измерения в анализируемом объеме пробы — 1,0 нг. Средняя полнота извлечения 94,93%.

Определению не мещают компоненты препаративной формы.

3. Средства измерений, вспомогательные устройства,

реактивы и материалы

3.1. Средства измерений

Газовый хроматограф «Кристалл-2000М», ТУ 9443-001-12908609-95 снабженный термононным детектором с пределом Номер Госреестра детектирования по азоту в азобензоле 5 х 10 -13 г/с, 14516-95 предназначенный для работы с капиллярной колонкой Весы аналитические ВЛА-200 ГОСТ 24104

 Весы аналитические ВЛА-200
 ГОСТ 24104

 Меры массы
 ГОСТ 7328

 Микрошприц типа МШ-1М, вместимостью 1 мм³
 ТУ 2.833.105

Пробоотборное устройство ОП-442ТЦ (ЗАО "ОПТЭК", г. Номер Госреестра 18860-05

Барометр-анероид М-67	ТУ 2504-1797-75
Термометр лабораторный шкальный ТЛ-2, цена деления	TY 215-73E
1°С, пределы измерения 0 - 55°С	

Колбы мерные вместимостью 100 см³ ГОСТ 1770

Пипетки градуированные 2-го класса точности ГОСТ 29227

вместимостью 1,0, 2,0, 5,0, 10 см³

Цилиндры мерные с пришлифованной пробкой ГОСТ 1770 вместимостью 50 см³

Допускается использование средств измерения с аналогичными или лучшими характеристиками.

3.2. Реактивы

Проквиназид, аналитический стандарт с содержанием действующего вещества 98,0% (фирмы «Дю Пон»)

 Азот особой чистоты, из баллона
 ГОСТ 9293

 Ацетон, осч
 ГОСТ 2306

 Вода дистиллированная
 ГОСТ 6790

Допускается использование реактивов иных производителей с аналогичной или более высокой квалификацией.

3.3. Вспомогательные устройства, материалы

Аппарат для встряхивания типа АВУ -6с	ТУ 64-1-2851-78
Бумажные фильтры "синяя лента", обеззоленные	ТУ 6-09-2678-77
Воронки конусные диаметром 30-37 мм	FOCT 25336
Груша резиновая	
Колбы грушевидные на шлифе вместимостью 150 см ³	FOCT 9737
Стаканы химические с носиком, вместимостью 150 см3	FOCT 25336
Стекловата	
Стеклянные палочки	
Ректификационная колонна с числом теоретических	
тарелок не менее 50	

Ротационный вакуумный испаритель B-169 фирмы Buchi, Швейцария Установка для перегонки растворителей Хроматографическая колонка капиллярная ZB-5, длиной 15 м, внутренним диаметром 0,53 мм, толщина пленки сорбента 0,5 мкм

Допускается применение другого оборудования с аналогичными или лучшими техническими характеристиками.

4. Требования безопасности

- 4.1. При выполнении измерений необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007, требования по электробезопасности при работе с электроустановками по ГОСТ 12.1.019, а также требования, изложенные в технической документации на газовый хроматограф.
- 4.2. Помещение должно соответствовать требованиям пожаробезопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009. Содержание вредных веществ в воздухе на должно превышать норм, установленных ГН 2.2.5.1313-03 «Предельно-допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны». Организация обучения работников безопасности труда по ГОСТ 12.0.004.

5. Требования к квалификации операторов

К выполнению измерений допускают специалистов, имеющих квалификацию не ниже лаборанта-исследователя, с опытом работы на газовом хроматографе.

К проведению пробоподготовки допускают оператора с квалификацией «лаборант», имеющего опыт работы в химической лаборатории.

6. Условия измерений

При выполнении измерений соблюдают следующие условия:

- процессы приготовления растворов и подготовки проб к анализу проводят при температуре воздуха (20±5)°С и относительной влажности не более 80%.
- выполнение измерений на газовом хроматографе проводят в условиях, рекомендованных технической документацией к прибору.

7. Подготовка к выполнению измерений

Выполнению измерений предшествуют следующие операции: очистка ацетона (при необходимости), приготовление градуировочных растворов, установление градуировочной характеристики, подготовка фильтров для отбора проб, отбор проб.

7.1. Очистка ацетона

Ацетов перегоняют над небольшим количеством КМnO₄ и прокаленным карбонатом калия или подвергают ректификационной перегонке на колонне с числом теоретических тарелок не менее 50.

7.2. Приготовление градуировочных растворов и раствора внесения

7.2.1. Исходный раствор проквиназида для градуировки (концентрация 100 мкг/см²). В мерную колбу вместимостью 100 см³ помещают 0,01 г проквиназида, растворяют в 40 - 50 см³ ацетона, доводят ацетоном до метки, тщательно перемещивают.

Раствор хранят в холодильнике при температуре 4-6°C в течение 3-х месяцев.

7.2.2. Рабочие растворы M = 1-4 проквиназида для градуировки (концентрация 1.0-10 мкг/см³)

В 4 мерные колбы вместимостью 100 см³ помещают по 1.0, 2.0, 5.0 и 10.0 см³ исходного раствора проквиназида для градуировки с концентрацией 100 мкг/см³ (п. 7.2.1.), доводят до метки ацетоном, тщательно перемещивают, получают рабочие растворы №№ 1 - 4 с концентрацией проквиназида 1.0, 2.0, 5.0 и 10.0 мкг/см³, соответственно.

Растворы хранят в холодильнике при температуре 4-6°C в течение месяца.

Для приготовления проб с внесением при оценке полноты извлечения действующего вещества методом «внесено-найдено» используют рабочий градуировочный раствор № 4 с концентрацией проквиназида 10 мкг/см³, а также исходный градуировочный раствор с концентрацией проквиназида 100 мкг/см³.

7.3. Установление градуировочной характеристики

Градуировочную характеристику, выражающую зависимость площади пика (мВ*сек) от концентрации проквиназида в растворе (мкг/см³), устанавливают методом абсолютной калибровки по 4-м растворам для градуировки.

В испаритель хроматографа вводят по 1 мм³ каждого градуировочного раствора и анализируют в условиях хроматографирования по п. 7.3.1. Осуществляют не менее 3-х параллельных измерений. Устанавливают площадь пика действующего вещества.

Градуировочный график проверяют перед проведением измерений, анализируя один из градуировочных растворов. Если значения площадей отличаются более, чем

на 12% от данных, заложенных в градуировочную характеристику, ее строят заново, используя свежеприготовленные рабочие растворы для градуировки.

7.3.1. Условия хроматографирования

Измерения выполняют при следующих режимных параметрах:

Газовый хроматограф «Кристалл-2000М», снабженный термононным детектором.

Колонка капиллярная ZB-5, длиной 15 м, внутренним диаметром 0,53 мм, толицина пленки сорбента 0,5 мкм

Температура детектора: 320°C

испарителя: 260°C

Температура термостата колонки программированная. Начальная температура – 130°С, выдержка 1 мин, нагрев колонки со скоростью 20 градусов в минуту до температуры 270°С, выдержка - 3 мин.

Скорость газа 1 (азот): 25 см/сек, давление 10,263 кПа, поток 3,361 см³/мин.

Газ 2: деление потока 1:2,975; сброс 10 см³/мин.

Скорость газа 3: 30 см³/мин.

Скорость воздуха 200 см³/мин; водорода 13 см³/мин.

Хроматографируемый объем: 1 мм³

Ориентировочное время выхода проквиназида: 8 мин 24 сек.

7.4. Подготовка фильтров для отбора проб воздуха

Фильтры «синяя лента» последовательно по 3 раза промывают этанолом, затем ацетоном порциями 25-30 см³, сущат на воздухе при комнатной температуре.

До использования фильтры хранят в герметично закрытой стеклянной таре.

8. Отбор и хранение проб

Отбор проб проводят в соответствии с требованиями ГОСТ 12.1.005-88 "ССБТ. Общие санитарно-гигиенические требования к воздуху рабочей зоны".

Воздух с объемным расходом 1-4 дм³/мин аспирируют через бумажный фильтр "синяя лента", помещенный в фильтродержатель.

Для измерения концентрации проквиназида на уровне 0,5 ОБУВ для воздуха рабочей зоны необходимо отобрать 4 дм³ воздуха.

Экспонированные фильтры, помещенные в полиэтиленовые пакеты, хранят в колодильнике при температуре $4 - 6^{\circ}$ C не более 15 дней.

8, Выполнение измерений

Экспонированный фильтр переносят в химический стакан вместимостью 150 см³, заливают 20 см³ ацетона, помещают на механический встряхиватель на 10 мин. Растворитель сливают, фильтр еще дважды обрабатывают новыми порциями ацетона объемом 10 см³, выдерживая на встряхивателе по 5 мин.

Объединенный экстракт упаривают в грушевидной колбе на ротационном вакуумном испарителе при температуре бани не выше 40^{9} С почти досуха, оставшийся растворитель отдувают потоком теплого воздуха. Остаток растворяют в 2 см³ ацетона и анализируют при условиях хроматографирования, указанных в п. 7.3.1.

Пробу вводят в испаритель хроматографа не менее двух раз. Устанавливают площадь пика действующего вещества, с помощью градуировочного графика определяют концентрацию проквиназида в хроматографируемом растворе.

Перед анализом опытной пробы проводят хроматографирование холостой (контрольной) пробы - экстракта неэкспонированного фильтра.

Образцы, дающие пики, большие, чем градуировочный раствор с концентрацией 10,0 мкг/см³, разбавляют ацетоном.

9. Обработка результатов анализа

Массовую концентрацию проквиназида в пробе воздуха X, мг/м³, рассчитывают по формуле:

$$X = C * W/V_t$$
, где

С - концентрация проквиназида в хроматографируемом растворе, найденная по градуировочному графику в соответствии с величиной площади хроматографического пика, мкг/см³;

W - объем экстракта, подготовленного для хроматографирования, см³;

 V_t - объем пробы воздуха, отобранный для анализа, приведенный к стандартным условиям (давление 760 мм рт. ст., температура 20° C), дм³.

$$V_1 = 0.386 *P* ut/(273+T)$$
.

где Т - температура воздуха при отборе пробы (на входе в аспиратор), град.С,

Р - атмосферное давление при отборе пробы, мм рт. ст.

u - расход воздуха при отборе пробы, дм³/мин,

t - длительность отбора пробы, мин.

Примечание: Идентификация и расчет концентрации проквиназида в пробах могут быть проведены с помощью программы обработки хроматографических данных с применением компьютера, включенного в аналитическую систему.

10. Оформление результатов измерений

За результат анализа (\overline{X}) принимается среднее арифметическое результатов двух параллельных определений X_1 и X_2 ($\overline{X}=(X_1+X_2)/2$), расхождение между которыми не превышает значений норматива оперативного контроля сходимости (d): $|X_1-X_2| \le d$.

$$d = d_{ODL} * \overline{X}/100, Mr/M^3,$$

где d -норматив оперативного контроля сходимости, мг/м³;

d _{отм.}-норматив оперативного контроля сходимости, % (равен 13%).

Результат количественного анализа представляют в виде:

• результат анализа \overline{X} (мг/м³), характеристика погрешности δ , % (равна 25%), P=0.95 или

 $\overline{X} \pm \Delta$ мг/м³, P = 0,95, где Δ - абсолютная погрешность.

$$\Delta = \frac{\delta \cdot \overline{X}}{100} , \text{ Mr/M}^3$$

Результат измерений должен иметь тот же десятичный разряд, что и погрешность.

Если содержание компонента менее нижней границы диалазона определяемых концентраций, результат анализа представляют в виде:

«содержание проквиназида в пробе воздуха менее 0,2 мг/м³»*

* 0.2 мг/м³ - предел обнаружения при отборе 10 дм³ воздуха.

11. Контроль погрешности измерений

Оперативный контроль погрешности и воспроизводимости измерений осуществляется в соответствии с ГОСТ ИСО 5725-1-6. 2002 «Точность (правильность и прецизионность) методов и результатов измерений».

12. Разработчики

Юдина Т.В., Федорова Н.Е., Рогачева С.К. (ФГУН «Федеральный научный центр гигиены им. Ф.Ф. Эрисмана Роспотребнадзора»)