4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Определение остаточных количеств пестицидов в пищевых продуктах, сельскохозяйственном сырье и объектах окружающей среды

Сборник методических указаний МУК 4.1.1437—4.1.1448—03, МУК 4.1.1453—4.1.1460—03, МУК 4.1.1467—03

Выпуск 4

Издание официальное

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Определение остаточных количеств пестицидов в пищевых продуктах, сельскохозяйственном сырье и объектах окружающей среды

Сборник методических указаний МУК 4.1.1437—4.1.1448—03, МУК 4.1.1453—4.1.1460—03, МУК 4.1.1467—03

Выпуск 4

ББК 51.21 О 37

О 37 Определение остаточных количеств пестицидов в пищевых продуктах, сельскохозяйственном сырье и объектах окружающей среды: Сборник методических указаний. Вып. 4—М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2007.—254 с.

Настоящий сборник содержит копии оригиналов методических указаний по определению остаточных количеств пестицидов в пищевых продуктах, сельскохозяйственном сырье и объектах окружающей среды.

- 1. Сборник подготовлен: Федеральным научным центром гигиены им. Ф.Ф. Эрисмана (академик РАМН, проф. В.Н. Ракитский, проф. Т.В. Юдина); Российским государственным аграрным университетом МСХА им. К.А. Тимирязева (проф. В.А. Калинин, к.х.н. А.В. Довгилевич); при участии Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (А.П.Веселов). Разработчики методов указаны в каждом из них.
- 2. Методические указания рекомендовваны к утверждению Комиссией по государственному санитарно-эпидемиологическому нормированию Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека.
- 3. Утверждены Главным государственным санитарным врачом Российской Федерации, Руководителем Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, академиком РАМН Г.Г. Онищенко 24 июня 2003 г.
 - 4. Введены впервые.

ББК 51.21

Формат 60х88/16 Печ.л.16,0

Тираж 150 экз.

Тиражировано отделом информационно-издательского обеспечения Федерального центра гигиены и эпидемиологии Роспотребнадзора

- © Роспотребнадзор, 2007
- © Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2007

Содержание

Определение остаточных количеств тритосульфурона в воде, почве, зерне и соломе зерновых культур, зерне и зеленой массе кукурузы методом высокоэффективной жидкостной хроматографии: МУК 4.1.1437—03	4
Определение остаточных количеств трифлуралина в зеленой массе и зерне зерновых культур, в семенах и масле подсолнечника, сои и рапса методом газожидкостной хрома- тографии: МУК 4.1.1438—03	20
Определение остаточных количеств фенпироксимата и его метаболитов в воде, почве, винограде и яблоках методом высокоэффективной жидкостной хроматографии: МУК 4.1.1439—03	30
Измерение концентрации фенпироксимата в воздухе рабочей зоны методом высокоэффективной жидкостной хроматографии: МУК 4.1.1440—03	43
Измерение концентраций флуметсулама и флорасулама в воздухе рабочей зоны методом высокоэффективной жидкостной хроматографии: МУК 4.1.1441—03	50
Определение остаточных количеств флуметсулама и флорасулама в воде, почве, зерне и соломе зерновых колосовых культур методом высокоэффективной жидкостной хроматографии: МУК 4.1.1442—03	59
Определение остаточных количеств флуазифоп-П-бутил по флуазифоп-П в воде, зеленой массе растений, клубнях картофеля, зерне гороха, семенах и масле сои, подсолнечника, рапса, льна методом газожидкостной хроматографии: МУК 4.1.1443—03	77
Определение остаточных количеств флутриафола в воде, почве, зеленой массе, зерне и соломе зерновых колосовых культур, ботве и корнеплодах сахарной свеклы, винограде и яблоках методом капиллярной газожидкостной хроматографии: МУК 4.1.1444—03	99
Определение остаточных количеств хлороталонила в зерне и соломе зерновых колосовых культур, винограде, яблоках, хлороталонила и его метаболита – SDS 3701 (R 182281) методом газожидкостной хроматографии: МУК 4.1.1445—03	113
Определение остаточных количеств эсфенвалерата в воде водоемов, почве, яблоках, клубнях картофеля, зерне и соломе зерновых колосовых культур методом газожидкостной хроматографии: МУК 4.1.1446—03	128
Измерение концентраций карбосульфана в воздухе рабочей зоны методом газожидкостной хроматографии: МУК 4.1.1447—03	139
Определение остаточных количеств диниконазола в семенах и масле подсолнечника методом газожидкостной хроматографии: МУК 4.1.1448—03	146
Измерение концентраций дикамбы в воздухе рабочей зоны газожидкостной и тонкослойной хроматографией: МУК 4.1.1453—03	153
	164
Определение остаточных количеств клефоксидима в воде, почве, зерне и соломе риса методом высокоэффективной жидкостной хроматографии: МУК 4.1.1455—03	176
Определение остаточных количеств кломазона в воде, почве, зерне, соломе риса, семенах и масле сои хроматографическими методами: МУК 4.1.1456—03	187
Определение остаточных количеств крезоксим-метила в воде, почве, яблоках и его метаболита крезоксима в воде и почве газохроматографическим методом: МУК 4.1.1457—03.	203
Определение остаточных количеств метазахлора в семенах и масле горчицы и рапса га- зохроматографическим методом: МУК 4.1.1458—03	215
Определение остатков пирипроксифена в воде, почве и яблоках методом высокоэффективной жидкостной хроматографии: МУК 4.1.1459—03	223
Определение остаточных количеств тепралоксидима в воде, почве, сахарной свекле и сое методом газожидкостной хроматографии: МУК 4.1.1460—03	233
Определение остаточных количеств бромуконазола в воде, почве, зерне и зеленой массе зерновых колосовых культур, ягодах черной смородины и винограда методом	21-
газожидкостной хроматографии: МУК 4.1.1467—03	245

Главный Государственный санитарный врач

Российской Федерации

Первый аместитель Министра здравоохранени — сийской Федерации

энищенко

Дата введения: 50 шеня 20032.

4.1. МЕТОДЫ КОНТРОЛЯ, ХИМИЧЕСКИЕ ФАКТОРЫ

Методические указания по определению остаточных количеств Флуазифон-II-бутила по Флуазифопу-II в воде, зеленой массе растений, клубнях картофеля, зерне гороха, семенах и масле сои, подсолнечника, рапса, льна методом газожидкостной хроматографии.

1. Вводная часть,

Фирма - производитель: Синжента.

Торговое название препарата: Фюзилад-супер, Фюзилад новый.

Название действующего вещества по ИСО: Флуазифоп-П-бутил.

Название действующего вещества по ИЮПАК: Бутиловый эфир (R)-2-[4-(5-трифторметил-2-пиридилокси)-фенокси]пропионовой кислоты.

Эмпирическая формула: С19Н20F3NO4.

Молекулярная масса 383.4.

Химически чистый Флуазифоп-П-бутил представляет собой жидкость светлосоломенного цвета без запаха.

Давление паров: 0,033 мПа (20⁰ C).

Температура кипения: 170°C.

Коэффициент распределения в системе н-октанол – вода $K_{ow} \log P = 4,5$ (при $20^{\circ}C$).

Растворимость в воде 1,1 мг/л (при 20° C). Смешивается с ацетоном, гексаном, метанолом, дихлорметаном, этилацетатом.

Скорость гидролиза в водной среде зависит от величины pH (DT₅₀ составляет >30 дней при pH 5; 78 дней - pH 7 и 29 часов - pH 9). Разрушение в результате водного фотолиза

идет быстрее (DT_{50} - 6 двей при pH 5). В растениях и почве быстро гидролизуется ($ДT_{50}$ в почве менее 24 час.). Основным метаболитом во всех средах является Флуазифоп-II (кислота).

Краткая токсикологическая характеристика: Флуазифол-П-бутил относится к малоопасным для человека и теплокровных животных веществам по острой пероральной (ЛД₅₀ для крыс 2451– 3680 мг/кг) и ингаляционной токсичности [ЛК₅₀ (4 час) для крыс >5,24 мг/л воздуха (аэрозоль)].

Обладает слабым кожно-резорбтивным действием, но вызывает раздражение слизистых оболочек глаз.

В России установлены следующие гигиенические нормативы:

ДСД - 0,001 мг/кг/сутки; ОДК в почве - 0,3 мг/кг; ПДК в воде водоёмов - 0,001 мг/дм³; ОБУВ в воздухе рабочей зоны - 0,5 мг/м³; ПДК в атмосферном воздухе - 0,001 мг/м³. МДУ в сельскохозяйственной продукции (мг/кг): свекла сахарная, лук - 0,2; плодовые, виноград, капуста, подсолнечник (семена) - 0,02; свекла столовая - 0,1; подсолнечник (масло) - 0,04; горох, соя (семена) - 0,03; соя (масло) - 0,05; огурцы - не допускается.

Область применения препарата: Флуазифоп-П-бутил – системный послевсходовый гербицид, эффективно подавляющий рост и развитие малолетних и многолетних злаковых сорных растений. Ингибирует синтез жирных кислот. Флуазифоп-П-бутил быстро адсорбируется через поверхность листа, гидролизуется до Флуазифопа-П и переносится через флоэму и ксилему, накапливаясь в ризомах и столонах многолетних злаках, а так же в меристемах однолетних и многолетних злаковых растений.

Зарегистрирован в России под торговым названием: Фюзилад новый, концентрат эмульсии (150 г/л), в качестве гербицида для подавления однолетних и многолетних злаковых сорных растений в посевах сои, сахарной и столовой свекле, конопли, картофеля, капусты белокочанной, огурцах, горохе, льна-долгунца при норме расхода 0,75-2 л/га.

Основной метаболит - Флуазифоп-П (кислота)

Название действующего вещества по ИСО: Флуазифоп-П.

Название действующего вещества по ИЮПАК: (R)-2-[4-(5-трифторметил-2-пиридилокси)-фенокси]пропионовая жислота.

Эмпирическая формула: С15H12F3NO4.

Молекулярная масса 327,3.

Химически чистая Флуазифоп-II (кислота) представляет собой белый кристаллический порошок.

Давление паров: 7.9×10^{-4} мПа (20^{0} С).

Коэффициент распределения в системе н-октанол – вода: $K_{ow} \log P = 3,1$ (при pH=2,6, 20° C); -0,8 (при pH=7, 20° C).

Растворимость в воде 780 мг/л (при 20°C). Хорошо растворима в метаноле, этаноле, ацетоне и ксилоле.

Относительно стабильна в кислой среде, период полураспада в почве от 5 до 20 недель.

Несущественный гидролиз при рН 5, 7 и 9 (25°C).

Краткая токсикологическая характеристика: Флуазифоп-П (кислота) относится к умеренно опасным веществам по острой и ингаляционной токсичности. Обладает слабым кожно-резорбтивным действием, но вызывает раздражение слизистых оболочек глаз.

Флуазифоп –П является основным метаболитом, определяемым в растениях и почве. В масличных культурах может сохранятся до 120 дней.

- Методика определения остаточных количеств Флуазифоп-П-бутила по Флуазифопу-П в воде, зеленой массе растений, клубиях картофеля, зерне гороха, семенах и масле сои, подсолнечника, рапса, льна методом газожидкостной хроматографии.
 - 2.1 Основные положения.
 - 2.1.1. Принцип метода.

Методика основана на спределении Флуазифоп-П-бутила и Флуазифоп-П-бутила по Флуазифопу-П методом газожидкостной хроматографии с электронозахватным детектором после раздельного извлечения Флуазифоп-П-бутила и Флуазифопа-П из воды, щелочного гидролиза Флуазифоп-П-бутила до Флуазифопа-П, очистки экстракта перераспределением между двумя несмешивающемися растворителями и концентрирующих патронах с последующим бутилированием и бромированием. Идентификация проводится по времени удерживания. Количественное определение - методом абсолютной капибровки.

2.1.2. Метрологическая характеристика метода.

Метрологическая характеристика метода представлена в таблицах 1 и 2.

 $\label{eq:Tadinupal} \mbox{ \begin{tabular}{ll} T аблица 1. \end{tabular} }$ Метрологические параметры метода.

Анализируе	Метрологические параметры, p=0,95, n=20				
мый объект	Предел	Диацазон	Среднее	Стандарт-	Доверитель-
	обнаружения	определяе-	значе-	ное	ный интервал
	Флуазифопа-	мых концен-	ние	отклоне-	среднего
	П, мг/кг (мг/л)	траций, мг/кг	опре-	ние, S	результата
			деления,		%, <u>+</u>
			%		
1	2	3	4	5	6
Вода	0,0005	0,0005-0,005	92,4	5,85	2,74
Вода	0,0005	0,0005-0,005	89,5	8,51	3,98
(Флуазифоп					
-П-бутил)					
Клубни	0,01	0,1 - 0,01	87,5	4, 51	87,5 ± 2,11
картофеля				ř ·	
Семена сои	0,01	0,1-0,01	83,6	3,55	83,6 ± 1,66
Семена	0,01	0,1-0,01	84,5	3,66	84,5 ± 1,71
подсолнечн					
ика					
Семена	0,01	0,1-0,01	82,5	2,17	82,5 ± 1,01
рапса					
Семена	0,01	0,1-0,01	86,8	2,53	86,8 ± 1,18
льна				:	
Масло сои	0,02	0,2-0,02	83,1	3,39	83,1 <u>+</u> 1,59
Масло	0,02	0,2-0,02	80,2	2,27	80,2 <u>+</u> 1,06
подсолнечн					
ика					
Масло	0,02	0,2-0,02	80,9	2,40	80,9 <u>+</u> 1,12
рапса					

Продолжение Таблицы 1.

1	2	3	4	5	6
Масло льна	0,02	0,2-0,02	82,8	2,96	82,8 ± 1,39
Зерно гороха	0,01	0,1-0,01	79,4	3,59	79,4 <u>+</u> 1,68
Зеленая масса растений	0,01	0,1-0,01	84,6	2,17	84,6 <u>+</u> 1,02

Таблица 2. Доверительный интервал и полнота определения Флуазифопа-П в клубнях картофеля, семенах и масле сои, подсолнечника, рапса, льна, зерне гороха и зеленой массы растений.

Анализируемый	Добавлено	Обнаружено	Доверительн	Полнота
Объект	Флуазифопа-П,	Флуазифопа-П,	ый интервал	Определен
	мг/кг (л)	мг/кг (л)	±	ия, %
1	2	3	4	5
Клубни	0,01	0,009	0,0003	90,6
Картофеня	0,02	0,018	0,0006	91,1
	0,05	0,042	0,0027	83,5
	0,1	0,085	0,0035	84,8
Семена	0,01	0,008	0,0005	81,2
сон	0,02	0,017	0,0003	86,1
	0,05	0,039	0,0018	77,7
	0,1	0,086	0,0015	86,5
Семена	0,01	0,008	0,0002	82,4
подсолнечника	0,02	0,017	0,0006	83,0
	0,05	0,041	0,0012	82,6
	0,1	0,089	0,0010	89,9
Семена рапса	0,01	0,008	0,0001	82,6
	0,02	0,017	0,0004	84,9
	0,05	0,041	0,0015	82,2
	0,1	0,081	0,0019	80,5

Продолжение таблицы 2.

		1 2		CHOMENTE 14
1	2	3	4	5
Семена льна	0,01	0,0083	0,0002	83,4
	0,02	0,0169	0,0002	84,9
	0,05	0,0435	0,0013	86,9
	0,1	0,0886	0,0009	88,6
Масло	0,02	0,017	0,0009	83,9
сои	0,05	0,041	0,0026	81,2
	0,1	0,085	0,0025	85,6
	0,2	0,163	0,0033	81,4
Масло	0,02	0,0163	0,0005	81,7
подсолнечника	0,05	0,0412	0,0006	82,4
	0,1	0,0781	0,0011	78,1
<u>-</u> 	0,2	0,1569	0,0007	78,5
Масло ранса	0,02	0,0163	0,0004	81,6
	0,05	0,0409	0,0022	81,8
	0,1	0,0807	0,0018	80,7
-	0,2	0,1592	0,0054	79,6
Масло льна	0,02	0,0158	0,0005	79,2
	0,05	0,0416	0,0011	83,3
	0,1	0,0845	0,0019	84,5
	0,2	0,1692	0,0038	84,7
Зерно гороха	0,01	0,0076	0,0001	76,4
<u>}-</u>	0,02	0,0170	0,0007	84,8
	0,05	0,0391	0,0005	78,2
Ī	0,1	0,0781	0,0005	78,1
Зеленая масса	0,01	0,0084	0,0002	84,0
растений	0,02	0,0169	0,0002	84,9
	0,05	0,0422	0,0012	84,5
	0,1	0,0831	0,0010	82,4
Вода	0,0005	0,000483	0,000046	96,7
	0,0010	0,00093	0,000046	93,3
ĺ	0,0025	0,00218	0,00013	87,4
	0,0050	0,00460	0,00029	91,9

1	2	3	4	5
Вода	0,0005	0,000495	0,000036	98,9
(Флуазифон-П-	0,0010	0,000886	0,000037	88,6
бутил)	0,0025	0,0019	0,00004	78,0
	0,0050	0,0046	0,00018	92,4

2.1.3. Избирательность метода.

В предлагаемых условиях метод специфичен в присутствии пестицидов, применяемых в интенсивной технологии выращивания сельскохозяйственных культур (хлор- и фосфорорганические пестициды, симм-триазины, амиды, синтетические пиретроиды, фенилмочевины, тио- и дитиокарбаматы).Избирательность повышается за счет использования капиллярных колонок.

- 2.2. Реактивы, растворы, оборудование и приборы.
- 2.2.1. Реактивы, растворы и материалы.

Флуазифоп-П (Фюзилад-супер кислота) с содержанием д.в. 99,8%.

Азот особой чистоты, ГОСТ 9293-74.

Бром, х.ч., ГОСТ 4109-79.

н-Бутанол, х.ч., ГОСТ 6006-78, свеженерегнанный.

Вода бидистиллированная*, денонизированная, ГОСТ 7602-72.

н-Гексан, ч., ТУ 6-09-3375-78.

Гелий, очищенный марки "А", ТУ-51-940-80

Кислота серная концентрированная, ч., ГОСТ 4204-77., 4н Н2SO4

Кислота соляная, концентрированная, х.ч., ГОСТ 3118-77, 6м раствор водный.

Кислота соляная, концентрированияя, х.ч., ГОСТ 3118-77, 4% раствор в метаноле по объему.

Метанол, ГОСТ 6995-77

Насалки для колонки:

5% OV-17 на Инертоне-супер, 0,16-0,20 мм, Хемапол, Чехия.

5% ХЕ-60 на Инертоне-супер, 0,16-0,20 мм, Хемапол, Чехия.

Натрий сернокислый, безводный, х.ч. ГОСТ 4166-76.

Натрия гидроокись, х.ч. ГОСТ 4328-77, 20% водный раствор, 10% водный раствор.

Патроны концентрирующие: Диапак-С16 (0,6 г) и Диапак Амин (0,6 г), фирма БиоХимМак, МГУ, ТУ 4215-002-05451931-94.

Спирт этиловый, ректифицированный, ТУ-6-09-1710-77.

Шприц медицинский с разъемом типа Люер, объемом не менее 10 мл.

Эфир диэтиловый (для наркоза). Фармакопея СССР.

*Бидистиллят кипятят в течение 6 часов с марганцовокислым калием, добавленным из расчета 1 г/л и затем перегоняют.

2.2.2 Приборы и оборудсвание.

Хроматограф газовый "Кристалл 2000М" с электронозахватным детектором (ЭЗД) и системой ввода Splitless или аналогичный.

Хроматограф газовый с детектором постоянной скорости рекомбинации ионов "Цвет-550" или другой аналогичного типа (предпочтителен детектор с 63 Ni) с пределом детектирования по линлану не выше 4×10^{-14} г/см³.

Колонка капиллярная кварцевая HP-5, (Crosslinked 5 % PH ME Siloxane), длина 30 м, внутренний диаметр 0,25 мм, толщина пленки 0.25 мкм или Капиллярная кварцевая колонка SE-30, длина 25 м, внутренний диаметр 0,2 мм (Россия, ООО "Предприятие Хромресурс XXI").

Алонж прямой с отводом для вакуума (для работы с концентрирующими патронами Диапак).

Вакуумный насос масляный, тип ВН-461-М.

Ванна ультразвуковая «Серьга» ТУ 3.836.008 или аналогичная.

Весы аналитические ВЛА-200, ГОСТ 34104-80 Е или аналогичные.

Весы лабораторные общего назначения, с наибольшим пределом взвешивания до 500 г и пределом допустимой погрешности ± 0,038 г, ГОСТ 19491-74.

Виалы с тефлоновыми прокладизми, Aldrich, cat. № Z27,702-9.

Водоструйный насос, ГОСТ 10696-75.

Воронки делительные 250 мл, 500 мл, ГОСТ 25336-82Е.

Воронки для фильтрования, стеклянные, ГОСТ 8613-75.

Встряхиватель механический ТУ 64-1-1081-73.

Колбы конические плоскодонные на 100 и 250 мл. ГОСТ 10394-72.

Колбы мерные на 25, 50 и 100 мл, ГОСТ 1770-74.

Концентраторы грушевидные (конические) 250 мл, ГОСТ 10394-72.

Микропшриц для газового хроматографа на 1-10 мкл.

Нагревательный блок для ввал, Dri-Block DB-3, Tecam.

Пипетки мерные на 1; 2,0; 5,0; 10 мл, ГОСТ 20292-74.

Ротационный испаритель МР-1М, ТУ 25-11-917-74.

Стаканы стеклянные на 100 мл, ГОСТ 6236-72.

Универсальная индикаторная бумага.

Фильтры бумажные "красная лента", ТУ 6-09-2678-77.

Центрифуга, МРТУ 42-219-69.

Центрифужные банки полипропиленовые с крыплками объемом 250 мл, Nalgene, cat. № 3120-0250.

2.3. Отбор проб.

Отбор проб производится в соответствии с "Унифицированными правилами отбора проб сельскохозяйственной продукции, пищевых продуктов и объектов окружающей среды для определения микроколичеств пестицидов" (№ 2051-79 от 21.08.79). Отобранные пробы клубней картофеля, зеленой массы растений замораживают и хранят в полиэтиленовой таре в морозильнике при температуре −18°C.

Пробы семян сои, подсолнечника, рапса, льна, зерна гороха хранят в бумажных или тканевых мешочках в сухом, хорошо проветриваемом шкафу, недоступном для грызунов. Пробы масла хранят в герметично закрытой таре в холодильнике при температуре +4°C. Перед анализом клубни картофеля размораживают и измельчают на терке. Зеленая масса растений после размораживания нарезается ножницами. Семена сои, подсолнечника, рапса, льна и зерно гороха размалываются на лабораторной мелышце.

- 2.4. Подготовка к определению.
- 2.4.1. Приготовление стандартных растворов.

Взвешивают 50 мг Флуазифопа-П (кислота) в мерной колбе на 50 мл, растворяют навеску в этаноле и доводят объем до метки этанолом (стандартный раствор №1, концентрация 1 мг/мл). Стандартный раствор №1 можно хранить в холодильнике в течение 1 месяца. Методом последовательного разбавления готовят стандартный раствор №2 с концентрацией 10 мкг/мл и стандартный раствор №3 с концентрацией 1 мкг/мл. Стандартный раствор №3 используют для проверки хроматографического поведения Флуазифопа-П на патронах Диапак (пункт 2.4.2.1. и 2.4.2.2).

Для построения калибровочного графика, при определении остаточных количеств Флуазифоп-П-бутила по Флуазифопу-П в клубнях картофеля, отбирают 1 мл стандартного раствора №2, упаривают его в концентраторе на ротационном вакуумном испарителе, пропускают через патроны Диапак С16 и Диапак Амии (пункт 2.4.2.3.), проводят бутилирование, с последующим бромированием как указано в разделах 2.4.5 и 2.4.6, и

получают стандартный раствор №4 бромопроизводного бутилового эфира Флуазифопа-П с концентрацией 2 мкг/мл. Из чего последовательным разбавлением готовят растворы с концентрациями: 0,2; 0,1; 0,05; 0,02 мкг/мл. Вводят в хроматограф по 1 мкл каждого из полученных четырех растворов, измеряют площадь пиков и строят график зависимости площади пика от концентрации Флуазифопа-П (мкг/мл).

Для построения калибровочного графика при определении остаточных количеств Флуазифоп-П-бутила по Флуазифопу-П в семенах и масле сои, подсолнечника, рапса, льна, зерне гороха, зеленой массе растений отбирают 1 мл стандартного раствора №2 в пузырек, удаляют растворитель током теплого воздуха и проводят бутилирование, с последующим бромированием, как указано в разделах 2.4.5 и 2.4.6. Получают стандартный раствор №4 бромопроизводного бутилового эфира Флуазифопа-П с концентрациями: 0,2; 0,1; 0,05; 0,02; 0,01 мкг/мл. Вводят в хроматограф по 1 мкл каждого из полученных растворов, измеряют площадь пиков и строят график зависимости площади пика от концентрации Флуазифопа-П (мкг/мл).

При определении содержания Флуазифопа-П и Флуазифоп-П-бутила в воде на набивных колонках взвешивают по 50 мг Флуазифопа-П и Флуазифоп-П-бутила в мерных колбах на 50 мл, растворяют навески в ацетоне и доводят объем до метки ацетоном (стандартные растворы №1 и №1а, концентрация 1 мг/мл). Методом последовательного разведения готовят стандартные растворы №2 и №2а с концентрацией 10 мкг/мл. Стандартные растворы №№ 1, 1а, 2 и 2а можно хранить в холодильнике в течение 1 месяца.

Для построения калибровочного графика методом последовательного разбавления ацетоном готовят стандартные растворы с концентрациями Флуазифопа-П и Флуазифоп-П-бутила 0,1; 0,05; 0,02 и 0,01 мг/мл соответственно.

2.4.2. Подготовка концентрирующих патронов Диапак С16 и Диапак Амин для очистки экстракта.

Все процедуры проводят с использованием вакуума.

При работе с концентрирующими патронами Диапак используется вода бидистиллят*.

Патрон Диапак C16 соединяют с патроном Диапак Амин, который устанавливают на алонж с отводом для вакуума, сверху в патрон Диапак C16 вставляют шприц с разъемом типа Люер объемом не менее 10 мл (используют как емкость для элюентов).

Кондиционируют патроны Диапак С16 и Диапак Амин 10 мл метанола и 10 мл воды бидистиллят*. Элюат отбрасывают. Нельзя допускать высыхания поверхности патрона! 2.4.2.1. Проверка хроматографического поведения Флуазифоп-кислоты на патроне Лиапак C16.

1 мл аналитического стандарта №3 Флуазифопа-П упаривают в концентраторе на ротационном вакуумном испарителе. Сухой остаток разводят в 5 мл воды, тщательно обмывая стенки концентратора, добавляют 1 мл 6М соляной кислоты, смесь тщательно перемешивают и полученный раствор наносят на подготовленный патрон Диапак С16 (пункт 2.4.2.). Патрон промывают 15 мл воды, и 10 мл смеси метанол-вода 1:9, элюат отбрасывают. Далее, с патрона последовательно собирают две порции по 5 мл смеси метанол-вода 9:1 в отдельные концентраторы и упаривают досуха при температуре бани не выше 30°C. Сухой остаток каждой фракции переносят тремя порциями по 2 мл диэтилового эфира в виалу и высущивают током теплого воздуха. Проводят бутилирование и бромирование, как указано в пулкте 2.4.5 и 2.4.6.

Газохроматографическим методом определяют содержание Флуазифопа-П в каждой фракции элюата. Фракции, содержащие бромопроизводное бутилового эфира Флуазифопа-П, объединяют, упаривают досуха, вновь растворяют в 5 мл гексана и вводят в хроматограф 1 мкл пробы.

Рассчитывают содержамие вещества в элюате, определяют полноту смыва Флуазифопа-П с патрона Диапак C16 и необходимый объем элюнрующей смеси.

2.4.2.2. Проверка хроматографического поведения Флуазифопа-П на патроне Диапак
Амин.

1 мл аналитического стандарта №3 упаривают в концентраторе на ротационном вакуумном испарителе. Сухой сстаток разводят в 5 мл смеси метанол:вода 9:1, тщательно обмывая стенки концентратора, и полученный раствор вносят на подготовленный патрон Диапак Амин (пункт 2.4.2.). Патрон промыть 10 мл смеси метанол:вода в соотношении 9:1, элюат отбросить. Далее две порции по 5 мл 4% соляной кислоты в метаноле пропускают через патрон, собирают в отдельные концентраторы и упаривают досуха. Сухой остаток каждой фракции переносят тремя порциями по 2 мл диэтилового эфира в виал, и удаляют растворитель током теплого воздуха. Далее проводят бутилирование и бромирование, как указано в пункте 2.4.5 и 2.4.6.

Газохроматографическим методом определяют содержание Флуазифопа-П в каждой фракции элюата. Фракции, содержащие бромопроизводное бутилового эфира Флуазифопа-П, объединяют, упаривают досуха, вновь растворяют в 5 мл гексана и вводят в хроматограф 1 мкл пробы.

Рассчитывают содержание вещества в элюате, определяют полноту смыва Флуазифопа-П с патрона и необходимый объем элюирующей смеси.

Примечание: хроматографическое поведение Флуазифопа-П на патронах обязательно проверяют при огработке методики и при использовании новой партии патронов.

2.4.3. Приготовление водно-спиртового раствора шелочи для гидролиза.

В мерную колбу объемом 1000 мл наливают 50 мл 20% водного раствора едкого натра и доводят объем до метки этиловым спиртом. Раствор тщательно перемешивают и хранят при комнатной температуре в течение одного месяца.

2.4.4. Приготовление раствора для бутилирования.

<u>Раствор для бутилирования готовят под тягой, строго соблюдая технику</u> безопасности,

В мерную колбу объемс и 100 мл осторожно приливают 2 мл концентрированной серной кислоты к н-бутанолу. Перемешивают раствор и доводят объем до метки бутанолом. Бутилирующую смесь хранят под тягой в течение одного месяца. Перед приготовлением раствора н-бут: нол перегоняют

2.4.5. Бутилирование.

К сухому остатку в виал в добавляют 1 мл 2% раствора концентрированной серной кислоты в буганоле. Плотно в крывают виалу крышкой и помещают в блок для виал нагретый до 100^{0} С. Бутилирование проводят в течение 30 минут. Данее, виалу охлаждают до комнатной температуры и проводят бромирование по пункту 2.4.6.

2.4.6. Бромирование бути чового эфира Флуазифопа-П.

Бромирование проводят год тягой, строго соблюдая технику безопасности.

К охлажденному раствору после бутилирования (раздел 2.4.5.) в виал добавляют 1 мл гексана и 0,2 мл брома, плотно закрывают пробкой и оставляют на 30 минут при комнатной температуре. Затем добавляют в виал 9 мл гексана (при определение остаточных количеств Флуазифопа-П в карт феле добавляют 4 мл гексана), 20-25 мл дистиплированной воды и 5-10 мл 10% водного раствора едкого натра. Смесь интенсивно встряхивают и после разделения фаз из верхнего гексанового слоя аликвоту 1 мкл вводят в хроматограф.

2.4.7. Подготовка и кондиционирование колонки.

Капиллярную кварцевую колонку HP-5, (Crosslinked 5 % PH ME Siloxane), длиной 30 м, или другую колонку, аналогичную по характеристикам, одним концом подсоединяют к инжектору. Проверяют утечку газа, устанавливают необходимую скорость потока газа (18-20 см/с). Кондиционируют колонку при температуре термостата 270°C в течение 6-8 часов. Далее колонку подсоединяют к детектору и выставляют рабочие режимы.

Готовую насадку (5% OV-17 на Инертоне-супер) засыпают в стеклянную колонку, уплотняют под вакуумом, колонку устанавливают в термостате хроматографа, не подсоединяя к детектору, и стабилизируют в токе азота при температуре 280°C в течение 8-12 часов.

- 2.5. Описание определения.
- 2.5.1. Клубни картофеля.
- 2.5.1.1. Экстракция и предварительная очистка. Из растертого на терке среднего образца клубней картофеля взвешивают аналитическую пробу 10 г в колбу объемом 250 мл. Добавляют в колбу 50 мл водно-спиртового раствора щелочи, встряхивают пробу на встряхивателе в течение 1 часа и оставляют на ночь. После выстаивания пробу встряхивают 0,5 часа, и экстракт фильтруют методом декантации через фильтр «красная лента» в концентратор.

К навеске добавляют еще 50 мл водно-спиртовой щелочи и встрахивают пробу 0,5 часа, полученный экстракт фильтруют и объединяют с предыдущим.

Объединенный экстракт упаривают до водного остатка. К остатку в концентраторе добавляют 100 мл воды и переносят пробу в делительную воронку. Водную фазу подкисляют 4н серной кислотой до рН=1, добавляют 15 г хлористого натрия и 50 мл диэтилового эфира. Делительную воронку встряхивают в течение двух минут и после полного разделения слоев, нижний водный слой собирают в плоскодонную колбу, а верхний эфирный слой собирают в концентратор, пропуская через безводный сульфат натрия. Водную фазу возвращают в делительную воронку и повторяют экстракцию два раза с тем же количеством эфира. Объединенный эфирный экстракт упаривают на ротационном вакуумном испарителе. Далее проводят очистку экстракта на патронах Диапак С16 и Диапак Амин (пункт 2.5.1.2.).

2.5.1.2. Очистка экстракта клубней картофеля на патронах Диапак С16 и Диапак
Амин.

Сухой остаток в концентраторе разводят в 5 мл воды, тщательно обмывая стенки концентратора, добавляют 1 мл 6М соляной кислоты, смесь тщательно перемешивают и полученный раствор наносят на подготовленный патрон Диапак С16 (пункт 2.4.2.). Патрон промывают 15 мл воды и 10 мл смеси метанол-вода в соотношении 1:9, элкоат отбрасывают. Далее, соединив патрон Диапак С16 с Диапак Амин (аминный патрон внизу) элкоируют Флуазифоп-П на патрон Диапак Амин 5 мл смеси метанол-вода 9-1. Патрон Диапак С16 снимают с алонжа. Патрон Диапак Амин промывают 10 мл смеси метанол-вода 9-1, элкоат отбрасывают. Флуазифоп-кислоту элкоируют 5 мл 4% соляной кислотой в

метаноле. Элюат собирают в концентратор и упаривают досуха на ротационном вакуумном испарителе при температуре бани не выше 30°С. Сухой остаток переносят тремя порциями по 2 мл диэтилового эфира в виал, и удаляют растворитель током теплого воздуха. Далее проводят бутилирование и бромирование, как указано в пункте 2.4.5 и 2.4.6.

2.5.2. Семена сои, подсолнечника и зерно гороха.

Из размолотого на лабораторной мельнице среднего образца семян сои (подсолнечника) или зерна гороха взвешивают аналитическую пробу 10 г в колбу объемом 250 мл. Добавляют в колбу 50 мл водно-спиртового раствора щелочи и встряхивают пробу на встряхивателе в течение 1 часа, экстракт фильгруют методом декантации через фильтр «красная лента» в концентратор.

К навеске добавляют еще 50 мл водно-спиртовой щелочи и встряхивают пробу 1 час, полученный экстракт фильтруют и объединяют с предыдущим.

Объединенный экстракт упаривают до водного остатка. Остаток в концентраторе разводят 40 мл воды, тщательно обмывают стенки концентратора, подкисляют 4н серной кислотой до рН=2 и переносят пробу в делительную воронку. Экстрагируют Флуазифоп-П диэтиловым эфиром. Для этого к водной фазе добавляют 20 мл диэтилового эфира, встряхивают воронку в течение двух минут и после полного разделения слоев нижний водный слой собирают в стакан, а верхний эфирный слой в плоскодонную колбу. Водную фазу возвращают в делительную воронку и повторяют экстракцию два раза с тем же количеством растворителя. После третьей экстракции водную фазу отбрасывают, а объединенный эфир переносят в новую делительную воронку.

В делительную воронку с эфирным экстрактом добавляют 30 мл 5% водного раствора бикарбоната натрия, встряхивают воронку в течение двух минут и после полного разделения слоев нижний водный слой собирают в плоскодонную колбу на 250 мл. Повторяют процедуру еще раз. Эфирную фракцию отбрасывают.

Объединенную водную фазу подкисляют 4н серной кислотой до рН=2 (Осторожно, вспенивание!) и переносят в чистую делительную воронку. Добавляют 30 мл диэтилового эфира, встряхивают воронку две минуты (Осторожно, необходимо дегазировать смесь!) и после полного разделения слоев нижний водный слой собирают в стакан, а верхний эфирный слой в концентратор, пропуская через безводный сульфат натрия. Водную фазу возвращают в воронку и повторяют экстракцию еще два раза, с тем же объемом эфира. После третьей экстракции воду отбрасывают. Объединенную эфирную фракцию упаривают досуха на ротационном вакуумном испарители при температуре бани не выше 30°C. Сухой остаток переносят тремя порциями по 2 мл диэтилового эфира в виалу, и удаляют

органический растворитель под током теплого воздуха. Далее проводят бутилирование и бромирование, как указано в пункте 2.4.5 и 2.4.6.

2.5.3 Семена рапса и льна.

Из размолотого на лабораторной мельнице среднего образца семян рапса (льна) взвешивают аналитическую пробу 10 г в колбу объемом 250 мл. Добавляют в колбу 50 мл водно-спиртового раствора щелэчи, встряхивают пробу на течение 1 часа, центрифугируют 10 мин. и фильтруют экстракт методом декантации через фильтр «красная лента» в концентратор. Повторяют экстракцию еще раз. Объединенный экстракт упаривают на ротационном вакуумном испарители при температуре водяной бани не более 30°С до водного остатка (регулируют вскуум в концентраторе так, чтобы не допускать образования пузырей и обильной пены, а так же закипания содержимого концентратора).

Остаток в концентраторе разводят 40 мл воды, тпательно обмывают стенки концентратора, подкисляют 4н серной кислотой до рН=2 и переносят пробу в делительную воронку. Экстрагируют Флуазафон-П диэтиловым эфиром. Для этого к водной фазе добаваяют 20 мл диэтилового эфира, встряхивают воронку в течение двух минут и после полного разделения слоев нижчий водный слой собирают в стакан, а верхний эфирный слой в плоскодонную колбу. Водную фазу возвращают в делительную воронку и повторяют экстракцию два раза с тем же количеством растворителя. После третьей экстракции водную фазу отбрасывают, а объединенный эфир переносят в новую делительную воронку.

В делительную воронку с эфирным экстрактом добавляют 30 мл 5% водного раствора бикарбоната нагрия, встряхивают воронку в течение двух минут и после полного разделения слоев нижний вод ный слой собирают в плоскодонную колбу на 250 мл. Повторяют процедуру еще раз. Эфирную фракцию отбрасывают.

Объединенную водную фазу подкисляют 4н серной кислотой до рН=2 (Осторожно, вспенивание!) и переносят в чистую делительную воронку. Добавляют 30 мл диэтилового эфира, встряхивают воронку две минуты (Осторожно, необходимо дегазировать смесь!) и после полного разделения слоев нижний водный слой собирают в стакан, а верхний эфирный слой в концентратор, пропуская через безводный сульфат натрия. Водную фазу возвращают в воронку и повторяют экстракцию еще два раза, с тем же объемом эфира. После третьей экстракции воду отбрасывают. Объединенную эфирную фракцию упаривают досуха на ротационном вакуумном испарители при температуре бани не выпие 30°С.

Сухой остаток растворяют в 20 мл гексана, используя УЗВ. Пробу переносят методом декантации в чистую, сухую делительную воронку на 250 мл. Повторяют процедуру еще раз, используя 20 мл гексана. Из объединенной гексановой фазы

Флуазифоп-П экстрагируют ацетонитрилом. Для этого в делительную воронку добавляют 30 мл ацетонитрила, встряхивают воронку две минуты и после полного разделения слоев нижний ацетонитрильный слой собирают в концентратор, пропуская через безводный сульфат натрия. Повторяют экстракцию еще два раза, с тем же объемом ацетонитрила. Объединенную ацетонитрильную фракцию упаривают досуха. Сухой остаток переносят тремя порциями по 2 мл диэтилового эфира в виал, и удаляют органический растворитель под током теплого воздуха. Далее проводят бутилирование и бромирование, как указано в пункте 2.4.5 и 2.4.6.

2.5.4. Масло сои, подсолнечника, льна и рапса.

Все работы в лаборатории проводятся при комнатной температуре 18-22°C.

Взвешивают аналитическую пробу масла 10 г в стакане объемом 100 мл. Переносят масло в делительную воронку 30 мл н-гексана, добавляют 50 мл 5% водного раствора бикарбоната натрия, встряхивают воронку две минуты и после полного разделения слоев нижний водный слой собирают в плоскодонную колбу. Повторяют экстракцию еще два раза, с тем же объемом 5% водного раствора бикарбоната натрия. После последней экстракции гексановую фракцию отбрасывают. Объединенный водный экстракт возвращают в ту же делительную воронку, добавляют 50 мл гексана, встряхивают воронку и после полного разделения слоев, нижний водный слой собирают в чистую плоскодонную колбу, а гексан отбрасывают.

Водную фазу подкисляют 4н серной кислотой до pH =1 (Осторожно, вспенивание!) и аккуратно переносят в чистую делительную воронку, добавляют 50 мл диэтилового эфира, встряхивают воронку две минуты (Осторожно, необходимо дегазировать смесь!) и после полного разделения слогв нижний водный слой собирают в стакан, а верхний эфирный слой в концентратор, пропуская через безводный сульфат натрия. Водную фазу возвращают в воронку и повторяют экстракцию два раза, с тем же объемом эфира. После третьей экстракции водную фазу отбрасывают. Объединенную эфирную фракцию упаривают досуха на ротационном вакуумном испарители при температуре бани не выше 30°C.

Сухой остаток переносят тремя порциями по 2 мл диэтилового эфира в виал, и удаляют растворитель под током теплого воздуха. Далее проводят бутилирование и бромирование, как указано в пункте 2.4.5 и 2.4.6.

2.5.5. Зеленая масса растений.

Из измельченного среднего образца зеленой массы растений взвешивают аналитическую пробу 10 г в колбу объемом 250 мл. Добавляют в колбу 50 мл водно-

спиртового раствора щелочи и встряхивают пробу на встряхивателе в течение 1 часа, экстракт фильтруют методом декантации через фильтр «красная лента» в концентратор.

К навеске добавляют еще 50 мл водно-спиртовой щелочи и повторяют экстракцию, полученный экстракт фильтруют, объединяют с предыдущим и упаривают до водного остатка.

Остаток в концентраторе разводят в 40 мл воды, тщательно перемешивают содержимое концентратора и переносят в делительную воронку, добавляют 25 мл диэтилового эфира и встряхивают воронку две минуты. После полного разделения слоев, нижний водный слой собирают в стакан, а верхний эфирный слой отбрасывают. Затем водную фазу возвращают в делительную воронку и повторяют процедуру, с тем же объемом растворителя.

Объединенную водную фракцию возвращают в воронку. К водной фазе добавляют 20 мл диэтилового эфира, встряхивают воронку в течение двух минут и после полного разделения слоев нижний водный слой собирают в стакан, а верхний эфирный слой в плоскодонную колбу. Водную фазу возвращают в делительную воронку и повторяют экстракцию два раза с тем же количеством растворителя. После третьей экстракции водную фазу отбрасывают, а объединенный эфир переносят в чистую делительную воронку.

В делительную воронку добавляют 30 мл 5% водного раствора бикарбоната натрия, встряхивают воронку в течение двух минут и после полного разделения слоев нижний водный слой собирают в плоскодонную колбу на 250 мл. Повторяю процедуру еще раз. Объединенную водную фазу подкисляют 4н серной кислотой до рН=2 (Осторожно, вспенивание!) и переносят в чистую делительную воронку, добавляют 30 мл диэтилового эфира, встряхивают воронку две минуты (Осторожно, необходимо дегазировать смесь!) и после полного разделения слоев нижний водный слой собирают в стакан, а верхний эфирный слой - в концентратор, пропуская через безводный сульфат натрия. Водную фазу возвращают в воронку и повторяют экстракцию еще два раза. После третьей экстракции воду отбрасывают. Объединенную эфирную фракцию упаривают досуха на ротационном вакуумном испарители при температуре бани не выпе 30°С.

Сухой остаток переносят тремя порциями по 2 мл диэтилового эфира в виал, и удаляют органический растворитель под током теплого воздуха. Далее проводят бутилирование и бромирование, как указано в пункте 2.4.5 и 2.4.6.

2.5.6. Вола.

Пробу воды объемом 200 мл помещают в делительную воронку на 500 мл и добавляют 0,2 мл 20% раствора NaOH (рН 8-9). Извлекают Флуазифоп-П-бутил диэтиловым эфиром тремя порциями по 40 мл, встряхивая каждый раз делительную

воронку 2-3 минуты. Эфирные экстракты собирают в концентратор, пропуская их через слой безводного сульфата натряя. Объединенную эфирную фракцию упаривают досуха на ротационном вакуумном испаратели при температуре бани не выше 30°С. Сухой остаток переносят тремя порциями по 2 мл диэтилового эфира в виал, и удаляют органический растворитель под током теплого воздуха. Далее проводят бромирование, как указано в пункте 2.4.6.

Водную фазу от предыду шей стадии после экстракции эфиром подкисляют до рН 1-2 добавляя приблизительно 4 мл 4 н серной кислоты и извлекают Флуазифон-П диэтиловым эфиром тремя порциями по 40 мл, встряхивая каждый раз делительную воронку 2-3 минуты. Эфирные экстракты собирают в концентратор, пропуская их через слой безводного сульфата натрия. Объединенную эфирную фракцию упаривают досуха на ротационном вакуумном испаратели при температуре бани не выше 30°С. Сухой остаток переносят тремя порциями по 2 мл диэтилового эфира в виал, и удаляют органический растворитель под током теплого воздуха. Далее проводят бутилирование и бромирование, как указано в пункте 2.4.5 и 2.4.5.

- 2.6. Условия хроматографирования и обработка результатов анализа.
- 2.6.1. Условия хроматогр іфирования.
- 2.6.1.1. Условия хроматографирования при определение остаточных количеств Флуазифоп-П-бутила по Флуази бопу-П в клубнях картофеля.

Хроматограф газовый "Кэнсталл 2000М" с электронозахватным детектором (ЭЗД).

Капиллярная кварцевая полонка HP-5, (Crosslinked 5 % PH ME Siloxane), длина 30 м, внутренний диаметр 0,25 мм, толщина пленки 0.25 мкм.

Температура детектора – 320° С, испарителя – 260° С.

Программированный нагрев колонки \sim с 180° C (const 3 мин) до 250° C по 10 град./мин, с 250° C по 4 град/мин.

Газ 1; тип регулятора расхода газа РРГ 11, давление 84 кПа.

Газ 2 (гелий) - расход 0,5 мл/мин, сброс 1: 80.

Режим Splitless, начало сброса 5 сек, длительность сброса 30 сек, минимальный расход 20 мл/мин.

Газ 3 (азот, поддув детектора) – 45 мл/мин.

Продувка детектора и испарителя по 60 мл/мин в течение 2 минут при температуре колонки 270°C.

Абсолютное время удерживания бромопроизводного бутилового эфира Φ луазифопа- Π - 12 мин 32 сек, окно 3%.

Объем пробы вводимый в испаритель – 1 мкл.

Линейность детектирования сохраняется в пределах 0,1-0,01 нг.

Каждую анализируемую пробу вводят 3 раза и вычисляют среднюю площадь пика. Образцы, дающие площадь пика больше, чем стандартный раствор с концентрацией 0,2 мкг/мл, разбавляют.

2.6.1.2. Условия хроматографирования при определение остаточных количеств Флуазифоп-П-бутила по Флуазифопу-П в семенах сои, подсолнечника, масле сои, подсолнечника, рапса, льна, зерле гороха, зеленой массы растений.

Хроматограф газовый "Кристалл 2000М" с электронозахватным детектором (ЭЗД).

Капиллярная кварцевая колонка HP-5, (Crosslinked 5 % PH ME Siloxane), длина 30 м, внутренний диаметр 0,25 мм, толщина пленки 0.25 мкм.

Температура детектора – 340° С, испарителя – 280° С.

Программированный нагрев колонки – с 220° C (const 2 мин) до 240° C по 2 град./мин, 240° C const 10 мин.

Газ 1: тип регулятора расхода газа РРГ 11, давление 101 кПа.

Газ 2 (гелий) - деление потока 1: 20, поток 18 мл/мин 30 сек., далее 80 мл/мин.

Газ 3 (азот, поддув детектора) - 45 мл/мин.

Продувка детектора и испарителя по 25 мл/мин в течение 2 минут при температуре коловки 250° C.

Абсолютное время удерживания бромопроизводного бутилового эфира Флуазифопа-П - 11 мин 42 сек, окно 1%.

Объем пробы вводимый в испаритель - 1 мкл.

Линейность детектирования сохраняется в пределах 0,1-0,01 нг.

Каждую анализируемую пробу вводят 3 раза и вычисляют среднюю площадь пика. Образцы, дающие площадь пика больше, чем стандартный раствор с концентрацией 0,1 мкг/мл, разбавляют.

2.6.1.3. Условия хроматографирования при определение остаточных количеств Флуазифоп-П-бутила по Флуазифопу-П в семенах рапса и льна.

Хроматограф газовый "Кристалл 2000М" с электронозахватным детектором (ЭЗД).

Капиллярная кварцевая колонка SE-30, длина 25 м, внутренний диаметр 0,20 мм.

Температура детектора — 340° С, испарителя — 280° С, колонки - 260° С.

Газ 1: тип регулятора расхода газа РРГ 11, давление 66 кПа.

Газ 2 (гелий) – деление потока 1: 40, поток 19 мл/мин.

Газ 3 (азот, ноддув детектора) - 45 мл/мин.

Продувка детектора и испарителя по 80 мл/мин в течение 2 минут при температуре колонки 260°C.

Абсолютное время удерживания бромопроизводного бутилового эфира Φ луазифопа- Π - 6 мин 17 сек, окно 1%.

Объем пробы вводимый в испаритель - 1 мкл.

Линейность детектирования сохраняется в пределах 0,1-0,01 нг.

Каждую анализируемую пробу вводят 3 раза и вычисляют среднюю площадь пика. Образцы, дающие площадь пика больше, чем стандартный раствор с концентрацией 0,1 мкг/мл, разбавляют.

2.6.1.4. Условия хроматографирования при определение остаточных количеств Флуазифон-П-бутила и Флуазифопа-П в воде.

Хроматограф газовый «Цвет-550» с дегекторм постоянной скорости рекомбинации ионов с пределом детектирования по линдану не выше 4×10⁻¹⁴ г/см³.

Показания электрометра (аттенюатора) – 16×10^{10} .

Скорость движения ленты самописца 15 см/час.

Колонка стеклянная, спиральная длиной 3 м, внутренний диаметр 3 мм.

Неподвижная фаза - 5% OV-17 на Инертоне-супер.

Температура термостата колонки – 260° С, детектора – 340° С, испарителя – 290° С.

Скорость газа-носителя - 33 мл/мин.

Объем вводимой пробы – 5 мкл.

Абсолютное время удерживания бромированного производного Φ луази ϕ оп-П-бутила — 13 мин 08 сек.

Линейность детектирования сохраняется в пределах от 0,5 до 5 нг.

Каждую анализируемую пробу вводят в хроматограф 3 раза и вычисляют среднюю высоту пика. Образцы, дающие пики большие, чем пик стандартного растовра с концентрацией 1 мг/мл, разбавляют.

Альтернативная фаза: 5% XE-60 на Инертоне-супер, длина колонки 2 м, внутрений диаметр 3 мм. Температура термостата колонки — 230ОС, детектора — 300ОС, испарителя — 250ОС. Скорость газа-носителя (азот) — 30 мл/мин. Время удерживания — 4 мин 36 сек.

2.6.2. Обработка результатов анализов.

Для обработки результатов анализов используется Программа сбора и обработки хроматографической информации Хроматэк Аналитик, версия 1.20.

Содержание Флуазифоп-П-бутила рассчитывают по формуле:

$$X = \frac{\text{Smp} \cdot A \cdot V}{100 \cdot \text{Ser} \cdot m} \times P \times 1,17;$$

где Х - содержание Флуазифопа-П в пробе, мг/кг;

Scт - высота (площадь) п. ка стандарта, мВ;

Sпр - высота (площадь) инка образца, мВ;

А - концентрация станда; тного раствора, мкг/мл;

V - объем экстракта, под отовленного для хроматографирования, мл;

т - масса анализируемог э образца, г;

Р - содержание Флуазифепа-П в аналитическом стандарте, %.

1,17 - коэффициент пересчета на Флуазифоп-П-бутил.

Содержание Флуазифол.-П-бутила и Флуазифопа-П в воде рассчитывают по формуле:

$$X = \frac{H_1 \cdot A \cdot V c}{100 \cdot H_0 \cdot m} \times P;$$

где Х - содержание Флуазиф эпа-П или Фйлуазифоп-П-бутила в пробе воды, мг/мл;

Но - высота пика стандатта, мм;

Н₁ - высота пика образца, мм;

А - концентрация станда этного раствора, мкг/мл;

V - объем экстракта, подготовленного для хроматографирования, мл:

с – фактор разведения, учитывающий взятие аликвот в ходе определения;

т - масса (объем) анализируемого образца, мл;

Р - содержание Флуазифопа-П в аналитическом стандарте, %.

3. Требования техники безопасности.

Необходимо соблюдать общепринятые правила безопасности при работе с органическими растворителями, токсичными веществами, электронагревательными приборами и сжатыми газами.

4. Разработчики.

Калинин В.А., профессор, канд. с-х. наук, Калинина Т.С., ст. н. сотр., канд. с-х. наук, Рыбакова О.И., науч. сотр., Лысов С.А., науч. сотр.

Московская сельскохозяйственная академия имени К.А. Тимирязева. 127550,

Москва, Тимирязевская ул., 53а, УНКЦ «Агроэкология нестицидов и агрохимикатов».

Телефон: 976-02-20; факс: 976-43-26, E-mail: tlmaa@online.ru