4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Определение остаточных количеств имидаклоприда в семенах и масле льна методом высокоэффективной жидкостной хроматографии

Методические указания МУК 4.1.3044—12

Издание официальное

Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека

4.1. МЕТОЛЫ КОНТРОЛЯ, ХИМИЧЕСКИЕ ФАКТОРЫ

Определение остаточных количеств имидаклоприда в семенах и масле льна методом высокоэффективной жидкостной хроматографии

> Методические указания МУК 4.1.3044—12

ББК 51.23 Об0

Обо Определение остаточных количеств имидаклоприда в семенах и масле льна методом высокоэффективной жидкостной хроматографии: Методические указания.—М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2013.—16 с.

ISBN 978-5-7508-1198-4

- 1. Разработаны сотрудниками ГНУ Всероссийского НИИ защиты растений Россельхозакалемии (И. А. Цибульская, Т. Д. Черменская, О. В. Долженко).
- 2. Рекомендованы к утверждению Комиссией по государственному санитарно-эпидемиологическому нормированию при Федеральной службе по надзору в сфере защиты прав потребителей и благополучия человека.
- 2. Утверждены Руководителем Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главным государственным санитарным врачом Российской Федерации Г. Г. Онищенко 8 октября 2012 г.
 - 3. Введены в действие с момента утверждения.
 - 4. Введены впервые.

ББК 51.23

Редактор Н. В. Кожока Технический редактор А. А. Григорьев

Подписано в печать 27.03.13

Формат 60×88/16

Тираж 200 экз.

Печ. л. 1,0 Заказ 23

Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека 127994, Москва, Вадковский пер., д. 18, стр. 5, 7

Оригинал-макет подготовлен к печати и тиражирован отделом издательского обеспечения Федерального центра гигиены и эпидемиологии Роспотребнадзора 117105, Москва, Варшавское ш., 19а

Отделение реализации, тел./факс 8 (495) 952-50-89

- © Роспотребнадзор, 2013
- © Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2013

Содержание

1.	Погрешность измерений	5
2.	Метод измерений	6
3.	Средства измерений, реактивы, вспомогательные устройства и материалы	7
4.	Требования безопасности	9
5.	Требования к квалификации операторов	9
6.	Условия измерений	9
7.	Подготовка к определению	10
8.	Отбор и хранение проб	12
9.	Проведение определения	12
10.	Проверка приемлемости результатов параллельных определений	14
11.	Оформление результатов	14
12.	Контроль качества результатов измерений	14

УТВЕРЖЛАЮ

Руководитель Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главный государственный санитарный врач Российской Федерации,

Г. Г. Онищенко

8 октября 2012 г.

Дата введения: с момента утверждения

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Определение остаточных количеств имидаклоприда в семенах и масле льна методом высокоэффективной жидкостной хроматографии

Методические указания МУК 4.1.3044—12

Свидетельство о метрологической аттестации № 01.5.04.090/01.00043/2012.

Настоящие методические указания устанавливают метод высокоэффективной жидкостной хроматографии для определения массовой концентрации имидаклоприда в семенах и масле льна в диапазоне концентраций 0.01-0.1 мг/кг.

Имидаклоприд

(E)-1-(6-хлор-3-пиридилметил)--N-нитроимидазолидин-2-илиденамин (IUPAC)

(2Е)-1-[(6-хлор-3-пиридинил)метил]--N-нитро-2-имидазолидинимин (CAS)

$$CI - C \\ N - N \\ NO_2$$

C₅H₁₀ClN₅O₂ Мол. масса: 255,7

Химически чистый имидаклоприд: бесцветные кристаллы со слабым характерным запахом.

Температура плавления: 144°C.

Давление паров: $4 \cdot 10^{-7}$ мРа (20 °C), $9 \cdot 10^{-7}$ мРа (25 °C). Коэффициент распределения в системе н-октанол—вода $K_{ow} \log P = 0,57$ (21 °C). Растворимость при 20 °C (г/л): в воде -0,61; дихиорметане -55; изопропаноле -1,2; толуоле -0,68; н-гексане <0,1. Гидролитически стабилен при pH = 5.

Краткая токсикологическая характеристика

Острая пероральная токсичность LD_{50} для крыс — 450 мг/кг. Острая дермальная токсичность (24 ч) для крыс $LD_{50} > 5\,000$ мг/кг. Не ирритант для кожи и глаз (кролики). Острая ингаляционная токсичность LC_{50} (4 ч) для крыс $> 5\,323$ мг/м³, 69 мг/м³ воздуха (аэрозоль). LC_{50} (96 ч) для рыб — 211 (237) мг/л. Группа токсичности по EPA и BO3 — II. Мутагенной и тератогенной активности в стандартных тестах не обнаружено.

Область применения препарата

Системный инсектицид и инсекто-протравитель группы неоникотиноидов. Эффективно уничтожает листовую тлю, белокрылку, минеров, трипсов, колорадского жука, долгоносиков на хлопчатнике, рисе, картофеле, кукурузе, сахарной свекле, овощных культурах, цитрусовых, косточковых и семечковых плодовых в течение вегетационного периода. Может использоваться для обработки как почвы, так и надземных органов растений.

Гигиенические нормативы для имидаклоприда в льне масличном не установлены.

1. Погрешность измерений

При соблюдении всех регламентированных условий проведения анализа в точном соответствии с данной методикой погрешность (и ее составляющие) результатов измерений при доверительной вероятности P=0.95 не превышает значений, приведенных в табл. 1, для соответствующих диапазонов концентраций.

Метрологические параметры

38	ределяе- граций,	овторяе- ительное тическое овторяе-	ıутрила- рецизи- %	спроиз- , %	ности* ситель- ти), ±8,
Объект анализа	Диапазон определяе мых концентраций, мг/кг, мг/дм	Показатель повторяе- мости (относительное среднеквадратическое отклонение повторяе- мости), с., %	Показатель внутрила бораторной прецизи-онности, $\sigma_{\mathbf{k}_{\mathbf{l}}}$, %	Показатель воспроиз- водимости, б _к , %	Показатель гочности* (границы относитель- ной погрешности), ±6,
Семена льна	0,01-0,1	7	8	11	23
Масло льна	0,01-0,1	7	8	11	23

^{*} Соответствует расширенной неопределенности Uотн. (в относительных единицах) при коэффициенте охвата k=2.

Таблица 2 Полнота извлечения имидаклоприда, стандартное отклонение, доверительный интервал среднего результата для n=20, P=0.95

Анализируемый объект, мг/кг	Предел обнаруже~ ния	Диапазон определяемых концентраций	Среднее значение определения, %	Стандартное от- клонение, S, %	Доверительный интервал среднего результата, ± %
Семена льна	0,01	0,01-0,1	94,3	4,6	4,2
Масло льна	0,01	0,01-0,1	96,8	4,2	3,8

2. Метод измерений

Методика основана на определении имидаклоприда методом ВЭЖХ с использованием УФ-детектора после его извлечения из образцов ацетонитрилом с последующей очисткой на концентрирующих патронах Диапак С.

Идентификация имидаклоприда проводится по времени удерживания, количественное определение — методом абсолютной калибровки.

Избирательность метода обеспечивается сочетанием условий подготовки проб и хроматографирования.

3. Средства измерений, реактивы, вспомогательные устройства и материалы

3.1. Средства измерений

Жидкостный хроматограф «ACQUITY» фирмы «Waters» с быстросканирующим УФ-детектором, снабженным дегазатором, автоматическим пробоотборником и термостатом колонки	Номер в Госреестре средств измерений 42816—09
Весы аналитические ВЛА-200	ГОСТ 24104—2001
Весы технические ВЛКТ-500	ΓΟCT 24104—2001
Колбы мерные на 10, 25, 50, 100 см ³	ΓΟCT 2393290
Микродозаторы одноканальные «ВІОНІТ» переменного объема от 200 до 1 000 мм³ и от 1 до 5 см³, Финляндия	Номер в Госреестре средств измерений 36152—07
Пипетки градуированные	ГОСТ 29227—91
Цилиндры мерные на 50 и 100 см ³	ГОСТ 23932—90
рН-метр универсальный ЭВ-74	ГОСТ 22261—76

Примечание. Допускается использование средств измерения иных производителей с аналогичными или лучшими характеристиками.

3.2. Реактивы

Ацетонитрил для ВЭЖХ, «В-200нм», сорт 5 или хч	ТУ 6-09-353487
Вода для лабораторного анализа (бидистиллированная, деионизованная)	ГОСТ Р 52501—2005

Имидаклоприд, аналитический стандарт с содержанием д.в. 99,9% (Sigma-Aldrich)

Кислота серная, хч	ГОСТ 4204—77
н-Гексан, хч, свеже- перегнанный	ТУ 2631-003- -05807999—98,
Натрия гидроксил, хч	ΓΟCT 432877
Фосфора пентоксид, ч	МРТУ 6-09-5759—69
Калий углекислый, хч	ΓΟCT 4221—76

MVK 4.1.3044-12

Подвижная фаза для ВЭЖХ: смесь ацетонитрил—вода (20: 80, по объему)

Элюент №1: смесь гексан—этилацетат (50: 50, по объему)

Этиловый эфир уксусной кислоты, ГОСТ 22300—76 чда

Примечание. Допускается использование реактивов иных производителей с более высокой квалификацией, не требующих дополнительной очистки растворителей.

3.3. Вспомогательные устройства и материалы

Аналитическая колонка: ACQUITY UPLC BEH C18 ($100 \times 2,1$) мм, 1,7 мкм (Waters)

Аллонж прямой с отводом для вакуума (для работы с концентрирующими патронами)

Баня ультразвуковая «Серьга»	ТУ 3.836.008 или аналогичная
Бидистиллятор	
Бумажные фильтры «красная лента»	ТУ 6.091678—86
Воронки лабораторные В-75-110	ГОСТ 25 336—82
Колбы круглодонные на шлифах КШ50 29/32 TC	ГОСТ 10384—72
Колбы круглодонные на шлифе вместимостью 25 см ³	ГОСТ 9737—93
Колбы плоскодонные на шлифах КШ500 29/32 TC	ГОСТ 10384—72
Мельница ножевая РМ-120 и лабораторная зерновая ЛМЗ	ТУ 1-01-0593—79
Патроны Диапак С (БиоХимМак СТ), 0,4 г (номер по каталогу 22.0300)	
Ротационный вакуумный испаритель фирмы BUCHI, мод. R 205 (Швейцария)	

Шприц медицинский с разъемом Льюера **ΓΟCT 22090**

Примечание. Допускается применение оборудования иных производителей с аналогичными или лучшими техническими характеристиками.

4. Требования безопасности

- 4.1. При выполнении измерений необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007—76, требования по электробезопасности при работе с электроустановками по ГОСТ 12.1.019—2009, а также требования, изложенные в технической документации на жидкостный хроматограф.
- 4.2. Помещение лаборатории должно быть оборудовано приточно-вытяжной вентиляцией, соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004—91 и иметь средства пожаротушения по ГОСТ 12.4.009—83. Содержание вредных веществ в воздухе не должно превышать ПДК (ОБУВ), установленных ГН 2.2.5.1313—03 и ГН 2.2.5.2308—07.

Организация обучения работников безопасности труда — по Γ 12.0.004—90.

5. Требования к квалификации операторов

Измерения в соответствии с настоящей методикой может выполнять специалист-химик, имеющий опыт работы методом высокоэффективной жидкостной хроматографии, ознакомленный с руководством по эксплуатации хроматографа, освоивший данную методику и подтвердивший экспериментально соответствие получаемых результатов нормативам контроля погрешности измерений по п. 12.

б. Условия измерений

При выполнении измерений выполняют следующие условия:

- процессы приготовления растворов и подготовки проб к анализу проводят при температуре воздуха (20 ± 5) °C и относительной влажности не более 80 %;
- выполнение измерений на жидкостном хроматографе проводят в условиях, рекомендованных технической документацией к прибору.

7. Подготовка к определению

7.1. Кондиционирование колонки

Перед началом анализа колонку Acquity BEH C18 кондиционируют в потоке подвижной фазы (0,1-0,2 см³/мин) до стабилизации нулевой линии.

7.2. Подготовка и очистка реактивов и растворителей

Органические растворители при необходимости перед началом работы очищают, сущат и перегоняют в соответствии с типовыми методиками. Гексан встряхивают с небольшими порциями концентрированной серной кислоты до прекращения окращивания свежей порции кислоты, затем промывают водой, 2% раствором гидроксида натрия и снова водой, после чего его сущат над гидроксидом натрия и перегоняют. Ацетонитрил сущат над пентоксидом фосфора и перегоняют; отогнанный растворитель повторно перегоняют над углекислым калием.

7.3. Подготовка концентрирующих патронов для очистки экстракта

Патрон с силикагелем Диапак С промывают 2 см³ этилацетата, затем 3 см³ элюента № 1.

7.4. Приготовление растворов

Для притотовления подвижной фазы смешивают ацетонитрил с водой в соотношении 20:80 по объёму, используя мерные цилиндры.

Приготовление элюента № 1: в колбе на 1 000 см³ смешивают 500 см³ н-гексана и 500 см³ этилапетата.

7.5. Приготовление основного и градуировочных растворов

7.5.1. Основной раствор с концентрацией 0.5 мг/см3

Точную навеску имилаклоприда (50 мг) помещают в мерную колбу объемом 100 см³, растворяют в ацетонитриле и доводят до метки.

Градуировочные растворы с концентрациями 0,1; 0,2; 0,4; 0,8 и 1,0 мкг/см³ готовят методом последовательного разбавления по объему, используя подвижную фазу.

7.5.2. Приготовление градуировочных растворов

Раствор № 1 с концентрацией имидаклоприда 1,0 мкг/см³: в мерную колбу вместимостью 100 см³ вносят 0,2 см³ основного раствора и доводят объем до метки подвижной фазой.

Раствор № 2 с концентрацией имидаклоприда 0,8 мкг/см³: в мерную колбу вместимостью 10 см³ вносят 8,0 см³ раствора № 1 и доводят объем до метки подвижной фазой.

Раствор № 3 с концентрацией имидаклоприда 0,4 мкг/см³: в мерную колбу вместимостью 10 см³ вносят 4,0 см³ раствора № 1 и доводят объем до метки подвижной фазой.

Раствор № 4 с концентрацией имидаклоприда 0,2 мкг/см³: в мерную колбу вместимостью 10 см³ вносят 2,0 см³ раствора № 1 и доводят объем до метки подвижной фазой.

Раствор № 5 с концентрацией имидаклоприда 0,1 мкг/см³: в мерную колбу вместимостью 10 см³ вносят 1,0 см³ раствора № 1 и доводят объем до метки подвижной фазой.

Стандартный раствор можно хранить в холодильнике при температуре 0-4 °C в течение 1 месяца, градуировочные растворы используют в течение рабочего дня.

При изучении полноты извлечения имидаклоприда используют ацетонитрильные растворы вещества, приготовленные из основного раствора методом последовательного разбавления по объему ацетонитрилом.

7.6. Построение градуировочного графика

Для построения градуировочного графика (площадь пика — концентрация имидаклоприда в растворе) в хроматограф вводят по 10 мм³ градуировочных растворов (не менее 3-х параллельных измерений для каждой концентрации, не менее 4-х точек по диапазону измеряемых концентраций). Затем измеряют площади пиков и строят график зависимости среднего значения площади пика от концентрации имидаклоприда в градуировочном растворе.

Методом наименьших квадратов рассчитывают градуировочный коэффициент (К) в уравнении линейной регрессии:

$$C = K \cdot S$$
, где

S – площадь пика градуировочного раствора.

Градуировку признают удовлетворительной, если значение коэффициента линейной корреляции оказывается не ниже 0,99.

Градуировочную характеристику необходимо проверять при замене реактивов, хроматографической колонки или элементов хроматографической системы, а также при отрицательном результате контроля градуировочного коэффициента.

Градуировочную зависимость признают стабильной при выполнении следующего условия:

$$\frac{|C-C_K|}{C}$$
100 $\leq \lambda_{\kappa onmp}$, где

 С – аттестованное значение массовой концентрации имидаклоприда в градуировочном растворе,

 C_{κ} — результат контрольного измерения массовой концентрации имидаклоприда в градуировочном растворе,

 $\lambda_{_{\text{контр}}}$ — норматив контроля градуировочного коэффициента, %. ($\lambda_{_{\text{контр}}}$ = 10 % при P = 0,95).

8. Отбор и хранение проб

Отбор проб семян льна производится в соответствии с ГОСТ 10852—86 «Семена масличные. Правила приемки и методы отбора проб». Семена хранят при комнатной температуре в полотняных мешочках, перед анализом доводят до стандартной влажности и измельчают. Масло хранят в холодильнике при температуре 0—4 °С в герметично закрытой стеклянной таре в течение 6 месяцев.

9. Проведение определения

9.1. Определение имидаклоприда в пробах семян и масла льна

Навеску размолотых на лабораторной мельнице семян $(10\pm0,1)$ г или масла $(10\pm0,1)$ г помещают в коническую колбу вместимостью $250\,\mathrm{cm}^3$, прибавляют $40\,\mathrm{cm}^3$ ацетонитрила и экстрагируют имидаклоприд в УЗ-бане в течение 15 мин при температуре $30\,^{\circ}\mathrm{C}$. Экстракцию повторяют с двумя свежими порциями ацетонитрила по $30\,\mathrm{cm}^3$. Объединенный экстракт промывают в делительной воронке двумя порциями гексана по $25\,\mathrm{cm}^3$. Гексановые промывки отбрасывают. Ацетонитрильный раствор выпаривают досуха на ротационном испарителе при температуре $40\,^{\circ}\mathrm{C}$. Далее пробучистят на патроне Диапак С, как это описано в п. 9.2.

9.2. Очистка на патронах Диапак С

Сухой остаток, полученный по п. 9.1, растворяют в 1 см 3 элюента № 1, вносят в предварительно кондиционированный патрон, колбу ополаскивают 1 см 3 элюента № 1 и также вносят на патрон.

Патрон промывают 10 см³ элюента № 1, элюат отбрасывают. Имидаклоприд элюируют 6 см³ этилацетата, элюат собирают, упаривают досуха на ротационном вакуумном испарителе при температуре не выше 40 °C, остаток растворяют в 1 см³ подвижной фазы и 10 мм³ вводят в хроматограф.

9.3. Условия хроматографирования

Ультраэффективный жидкостный хроматограф «ACQUITY» фирмы Waters с быстросканирующим УФ-детектором, снабженный дегазатором, автоматическим пробоотборником и термостатом колонки.

Аналитическая колонка ACQUITY UPLC BEH C18 $(2,1 \times 100)$ мм, 1,7 мкм (Waters).

Температура колонки (30 ± 1) °C.

Подвижная фаза: смесь ацетонитрил—вода в соотношении 20:80 (по объему).

Скорость потока элюента 0,2 см³/мин.

Рабочая длина волны УФ-детектора 268 нм.

Объем вводимой пробы 10 мм3.

Время удерживания имидаклоприда составляет $(4,3\pm0,2)$ мин.

9.4. Обработка результатов анализа

Содержание имидаклоприда в семенах и масле льна масличного $(X, \mathsf{Mr}/\mathsf{kr})$ вычисляют по формуле:

$$X = \frac{S_2 \cdot C \cdot V}{S_1 \cdot P}$$
, где

 S_1 — площадь пика имидаклоприда в стандартном растворе (мВ·с);

 S_2 — площадь пика имидаклоприда в анализируемой пробе (мВ·с);

V – объём пробы, подготовленной для хроматографического анализа, см³;

P — навеска анализируемого образца, г;

 С – концентрация стандартного раствора имидаклоприда, мкг/см³.

Образцы, дающие пики большие, чем стандартный раствор имидаклоприда 1 мкг/см³, разбавляют подвижной фазой для ВЭЖХ.

10. Проверка приемлемости результатов параллельных определений

За результат анализа принимают среднее арифметическое результатов двух параллельных определений, расхождение между которыми не превышает предела повторяемости (1):

$$\frac{2 \cdot |X_1 - X_2| \cdot 100}{X_1 + X_2} \le r \text{ , rge} \tag{1}$$

 X_1, X_2 — результаты параллельных определений, мг/кг; r — значение предела повторяемости ($r = 2.8 \, \sigma_r$).

При невыполнении условия (1) выясняют причины превышения предела повторяемости, устраняют их и вновь выполняют анализ.

11. Оформление результатов

Результат анализа представляют в виде:

$$(\overline{X} \pm \Delta)$$
 мг/кг при вероятности P = 0,95, где

 \overline{X} — среднее арифметическое результатов определений, признанных приемлемыми, мг/кг;

 Δ — граница абсолютной погрешности, мг/кг.

$$\Delta = \frac{\delta \times X}{100}$$
, где

 δ – граница относительной погрешности методики (показатель точности в соответствии с диапазоном концентраций), %.

В случае, если содержание компонента менее нижней границы диапазона определяемых концентраций, результат анализа представляют в виде:

«содержание вещества в пробе «менее нижней границы определения» (например: менее 0,01 мг/кг)».

12. Контроль качества результатов измерений

Оперативный контроль погрешности и воспроизводимости измерений осуществляется в соответствии с ГОСТ Р ИСО 5725-1-6—2002

^{* 0,01} мг/кг – предел обнаружения имидаклоприда в семенах и масле льна.

«Точность (правильность и прецизионность) методов и результатов измерений».

- 12.1. Стабильность результатов измерений контролируют перед проведением измерений, анализируя один из градуировочных растворов.
- 12.2. Плановый внутрилабораторный оперативный контроль процедуры выполнения анализа проводится с применением метода добавок.

Величина добавки Са должна удовлетворять условию:

$$C_d = \Delta_{AX} + \Delta_{AX}$$
, где

 $\pm\Delta_{_{A,X}}\left(\pm\Delta_{_{A,X'}}\right)$ — характеристика погрешности (абсолютная погрешность) результатов анализа, соответствующая содержанию компонента в испытуемом образце (расчетному значению содержания компонента в образце с добавкой, соответственно) мг/кг, при этом:

$$\Delta_x = \pm 0.84 \Delta$$
, где

△ - граница абсолютной погрешности, мг/кг:

$$\Delta = \frac{\delta \times X}{100}$$
, где

 δ – граница относительной погрешности методики (показатель точности в соответствии с диапазоном концентраций), %.

Результат контроля процедуры K_{κ} рассчитывают по формуле:

$$K_x = X' - X - C_{\lambda}$$
, где

 X', X, C_{θ} — среднее арифметическое результатов параллельных определений (признанных приемлемыми по п. 10) содержания компонента в образце с добавкой, испытуемом образце, концентрация добавки, соответственно, мг/кг;

Норматив контроля К рассчитывают по формуле

$$K = \sqrt{\Delta_{A,X'}^2 + \Delta_{A,X}^2}$$

Проводят сопоставление результата контроля процедуры (K_{κ}) с нормативом контроля (K).

Если результат контроля процедуры удовлетворяет условию

$$|K_{\kappa}| \le K,\tag{2}$$

процедуру анализа признают удовлетворительной.

При невыполнении условия (2) процедуру контроля повторяют. При повторном невыполнении условия (2) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

12.3. Проверка приемлемости результатов измерений, полученных в условиях воспроизводимости.

Расхождение между результатами измерений, выполненных в двух разных лабораториях, не должно превышать предела воспроизводимости (R):

$$\frac{2 \cdot |X_1 - X_2| \cdot 100}{|X_1 + X_2|} \le R , \text{ rme}$$
 (3)

 X_1, X_2 — результаты измерений, выполненных в двух разных лабораториях, мг/кг;

R — предел воспроизводимости (в соответствии с диапазоном концентрации), %.