УТВЕРЖДАЮ

Главный государственный санитарный врач Российской Федерации, Первый заместитель Министра здравоохранения Российской Федерации

Г. Г. Онищенко

16 мая 2003 г.

Дата введения: с момента утверждения

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Измерение массовых концентраций 1,4-дигидро-6,8дифтор-7-(3-метилпиперазин-1-ил)-4-оксо-1этилхинолин-3-карбоновой кислоты гидрохлорида (ломефлоксацина гидрохлорида) в воздухе рабочей зоны

Методические указания МУК 4.1.1343—03

методом высокоэффективной жидкостной хроматографии

1. Область применения

Настоящие методические указания устанавливают метод количественного хроматографического анализа воздуха рабочей зоны на содержание 1,4-дигидро-6,8-дифтор-7-(3-метилпиперазин-1-ил)-4-оксо-1-этил-хинолин-3-карбоновой кислоты гидрохлорид (ломефлоксацина гидрохлорида) в диапазоне концентраций от 0,05 до 1,00 мг/м³.

2. Характеристика вещества

2.1. Структурная формула.

- 2.2. Эмпирическая формула $C_{17}H_{20}CIF_2N_3O_3$.
- 2.3. Молекулярная масса 387,8.

- 2.4. Регистрационный номер CAS 98079-52-8.
- 2.5. Физико-химические свойства.

Ломефлоксацина гидрохлорид – кристаллический порошок белого цвета, $T_{\rm nz}$ 323 °C. Хорошо растворим в воде, растворим в органических растворителях.

Агрегатное состояние в воздухе – аэрозоль.

2.6. Токсикологическая характеристика.

Ломефлоксацина гидрохлорид обладает общетоксическим действием.

Ориентировочный безопасный уровень воздействия в воздухе рабочей зоны — 0.1 мг/м^3 .

3. Погрешность измерений

Методика обеспечивает выполнение измерений массовых концентраций ломефлоксацина с погрешностью не более $\pm\,20\,\%$ при доверительной вероятности 0.95.

4. Метод измерений

Измерения массовой концентрации ломефлоксацина гидрохлорида основаны на использовании высокоэффективной жидкостной хроматографии с применением спектрофотометрического детектора.

Отбор проб проводится с концентрированием на фильтр.

Нижний предел измерения содержания ломефлоксацина гидрохлорида в хроматографируемом объеме раствора 0,010 мкг.

Нижний предел измерения концентрации ломефлоксацина гидрохлорида в воздухе 0,05 мг/м³ (при отборе 200 дм³ воздуха).

Определению не мешают вещества, сопутствующие производству (целлюлоза микрокристаллическая, титана диоксид, поливинилпирролидон низкомолекулярный, магний стеариново-кислый, оксипропилцеллюлоза).

5. Средства измерений, вспомогательные устройства, материалы, реактивы, растворы

5.1. Средства измерений, вспомогательные устройства, материалы

Хроматограф жидкостный микроколоночный «Милихром» или другой подобного типа со спектрофотометрическим детектором Хроматографическая колонка стальная КАХ-44-3, 50 × 2 мм, заполненная сорбентом Сепарон С18, фракция 5 мкм Аспирационное устройство модель 822

ТУ 64-1-862—82

Фильтродержатель	ТУ 95.72.05—77
Весы аналитические	ГОСТ 24104—88Е
Устройство для фильтрации жидкостей,	
НПФ «Биохром»	
Посуда мерная лабораторная	ГОСТ 1770—74Е
Пипетки, вместимостью от 0,2 до 10 см ³	ГОСТ 29227—91
Фильтры АФА-ВП-10	ТУ 95-743—80
Фильтры HVLP, фирмы «Миллипор»	
Бюксы ⁵⁰ / ₃₀	ГОСТ 25336—82Е

5.2. Реактивы, растворы

Ломефлоксацина гидрохлорид, содержание основного вещества не менее 99 %, № регистрации 002583 от 30.07.92 Ацетонитрил для жидкостной хроматографии

Ацетонитрил для жидкостной хроматографии	ТУ-6-09-14-2167—84
Калий дигидрофосфат, хч, 0,02 М раствор	ГОСТ 4198—75
Ортофосфорная кислота, хч	ГОСТ 6552—58
Вода дистиллированная	ГОСТ 670972
_	

Допускается применение иных средств измерения, вспомогательных устройств, реактивов и материалов, обеспечивающих показатели точности, установленные для данной МВИ.

6. Требования безопасности

- 6.1. При работе с реактивами соблюдают требования безопасности, установленные для работы с токсичными, едкими и легковоспламеняющимися веществами по ГОСТ 12.1.005—88.
- 6.2. При проведении анализов горючих и вредных веществ соблюдают меры противипожарной безопасности по ГОСТ 12.1.004—76.
- 6.3. При выполнении измерений с использованием хроматографа соблюдают правила электробезопасности в соответствии с ГОСТ 12.1.019—79 и инструкции по эксплуатации прибора.

7. Требования к квалификации оператора

К выполнению измерений и обработке результатов допускают лиц с высшим и средним специальным образованием, имеющих навыки работы на жидкостном хроматографе.

8. Условия измерений

8.1. Приготовление растворов и подготовку проб к анализу проводят в нормальных условиях при температуре воздуха (20 ± 5) °C, атмосферном давлении 84—106 кПа и влажности воздуха не более 80 %.

8.2. Измерения на жидкостном хроматографе проводят в условиях, рекомендованных технической документацией к прибору.

9. Подготовка к выполнению измерения

9.1. Приготовление растворов

- 9.1.1. Стандартный раствор № 1 ломефлоксацина гидрохлорида в растворе элюента концентрацией 400 мкг/см³ готовится растворением 20 мг вещества в мерной колбе вместимостью 50 см³. Стандартный раствор № 2 ломефлоксацина гидрохлорида в растворе элюента концентрацией 40 мкг/см³ готовится разбавлением стандартного раствора № 1. Растворы устойчивы в течение месяца при хранении в холодильнике.
- 9.1.2. Раствор элюента готовят смешиванием в мерном цилиндре 50 см³ 0,02 М раствора дигидрофосфата калия, который готовят растворением 1,36 г указанной соли в 500 см³ дистиллированной воды, и 50 см³ ацетонитрила. Раствор доводят до рН 6 ортофосфорной кислотой. Непосредственно перед измерением раствор фильтруют с помощью устройства для фильтрации и фильтров «Миллипор» и дегазируют под вакуумом.

9.2. Подготовка прибора

Общую подготовку прибора осуществляют согласно инструкции по эксплуатации.

9.3. Установление градуировочной характеристики

Градуировочную характеристику, выражающую зависимость величины хроматографического сигнала от массы анализируемого вещества в хроматографируемом объеме пробы, устанавливают по методу абсолютной калибровки с использованием серии градуировочных растворов, которые готовят разбавлением стандартного раствора № 2 согласно табл. 1. Растворы устойчивы в течение двух недель при хранении в холодильнике.

Условия хроматографирования градуировочных смесей и анализируемых проб:

состав элюента: $0.02 \text{ M KH}_2\text{PO}_4$ –ацетонитрил, 1:1, pH 6; скорость потока элюента: 100 мм^3 /мин;

объем вводимой пробы: 5 мм³;

длина волны спектрофотометрического детектора: 286 нм; время удерживания ломефлоксацина гидрохлорида: 3 мин.

Растворы помещают в пробоотборное устройство хроматографа.

На полученной хроматограмме измеряют площади пиков с помощью интегратора хроматографа (в условных единицах) при анализе

шести растворов разных концентраций и холостой пробы, проводя не менее пяти параллельных определений для каждого раствора, и строят градуировочную кривую зависимости площади пика от количества компонента в пробе (мкг).

Таблица 1 Растворы для установления градуировочной характеристики при определении ломефлоксацина гидрохлорида

№ стан- дарта	Стандартный раствор ломефлоксацина № 2, см³	Раствор элюента, см ³	Концентрация вещества, мкг/см ³	Содержание вещества в хроматографируемом объеме пробы, мкг
1	0	20,0	0	0
2	1,0	19,0	2	0,01
3	2,0	18,0	4	0,02
5	3,5	16,5	7	0,035
	5,0	15,0	10	0,05
6	10	10,0	20	0,1
7	20	0	40	0,2

Проверку градуировочного графика проводят при изменении условий анализа, но не реже 1 раза в месяц.

9.4. Отбор пробы воздуха

10. Выполнение измерения

Фильтр с отобранной пробой помещают в бюкс и приливают пипеткой 5 см³ раствора элюента. Периодически встряхивая, выдерживают раствор в течение 5 мин и сливают его в пробирку. Степень экстракции с фильтра 92 %. Хроматографирование раствора пробы проводят в тех же условиях, что и хроматографирование градуировочных растворов. Количественное определение содержания анализируемого вещества в растворе проводят по предварительно построенному градуировочному графику.

11. Расчет концентрации

Концентрацию ломефлоксацина гидрохлорида (C, мг/м³) в воздухе вычисляют по формуле:

$$C = \frac{a \cdot b}{6 \cdot V}$$
, где

a — содержание вещества в анализируемом объеме пробы, найденное по градуировочному графику, мкг;

6 – объем пробы, взятый для хроматографирования, см³;

в – общий объем раствора пробы, см³;

V – объем воздуха, отобранного для анализа и приведенного к стандартным условиям, дм³ (см. прилож. 1).

12. Оформление результатов анализа

Результат количественного анализа представляют в виде $(C\pm\Delta)$ мг/м³, P=0.95, где $\Delta-$ характеристика погрешности, $\Delta=0.18C+0.001$.

13. Контроль погрешности методики

Значения характеристики погрешности, норматива оперативного контроля погрешности и норматива оперативного контроля воспроизводимости приведены в табл. 2 в виде зависимости от значения массовой концентрации анализируемого компонента в пробе *C*.

Результаты метрологической аттестации методики количественного химического анализа

Таблица 2

ſ	Диапазон	Наименование метрологической характерист				
	определяемых концентраций ломефлоксацина гидрохлорида, мг/м ³	характеристика погрешности, Δ , мг/м ³ ($P = 0.95$)	норматив оперативного контроля точности, K . мг/м ³ ($P = 0.90, m = 2$)	норматив оперативного контроля воспроизводимости, D , мг/м ³ $(P=0.95, m=2)$		
	От 0,05 до 1,00	0,18C + 0,001	0.17C + 0.001	0.12C + 0.002		

13.1. Оперативный контроль воспроизводимости

Оперативный контроль воспроизводимости выполняют в одной серии с анализом рабочих проб. Отбирают реальные пробы воздуха рабочей зоны из одного традиционного места отбора двумя пробоотборниками одновременно. Анализируют в соответствии с прописью методики разными аналитиками, максимально варьируя условия проведения анализа: партии реактивов, наборы мерной посуды и т. д., и получают два результата C_1 и C_2 анализов. Результаты анализа не должны отличаться

друг от друга на величину большую, чем норматив оперативного контроля воспроизводимости D:

$$|C_1 - C_2| < D$$

При превышении расхождения между двумя результатами норматива оперативного контроля воспроизводимости эксперимент повторяют. При повторном превышении указанного норматива выясняют причины, приводящие к неудовлетворительным результатам, и устраняют их.

Внутренний оперативный контроль воспроизводимости проводят не реже, чем 1 раз в неделю.

13.2. Оперативный контроль точности

Оперативный контроль точности выполняют в одной серии с анализом рабочих проб. Отбирают реальные пробы воздуха рабочей зоны из одного традиционного места отбора двумя пробоотборниками одновременно. Затем к одной пробе, отобранной на фильтр, делают добавку анализируемого компонента δC из раствора, нанося его на фильтр. Результаты анализа C_1 без добавки и C_2 с добавкой получают по возможности в одинаковых условиях: одним аналитиком, с одной партией реактивов, одним набором посуды и т. д. Величина добавки δC должна соответствовать 50—150% от содержания компонента в пробе, а величина C_2 не должна выходить за верхнюю границу диапазона измерения.

Погрешность процедуры отбора проб контролируют путем поверки используемых пробоотборников. Расчет норматива оперативного контроля погрешности К проводят по характеристике погрешности методики за вычетом характеристики погрешности пробоотборника. Решение об удовлетворительной погрешности принимают при выполнении условия:

$$|C_2 - C_1 - \delta C| \leq K$$

14. Нормы затрат времени на анализ

Для проведения серии анализов из 6 проб при последовательном отборе проб воздуха требуется 4 ч.

Методические указания разработаны Российским государственным медицинским университетом, лабораторией токсикологии и экологии (Гугля Е. Б.).