Группа Т51 УДК 658,562,014:65,011,56 ОТРАСЛЕВОЙ СТАНДАРТ OCT 1 00320-78 ОТРАСЛЕВАЯ АВТОМАТИЗИРОВАННАЯ СИСТЕМА УПРАВЛЕНИЯ. На 16 страницах ПОДСИСТЕМА УПРАВЛЕНИЯ КАЧЕСТВОМ Методика прогнозирования показателей Введен впервые Проверено в 1982 г. 9070 뽀 № 087-16 Распоряжением Министерства от 26 декабря 1978 г. срок введения установлен с 1 июля 1979 г. Настоящий стандарт распространяется на теоретические методы прогнозировании показателей, закладываемых в отраслевой автоматизированной системе управления (OACY). Стандарт устанавливает способ определения значений показателей, представленных в виде временных рядов. Ме подлинина ГР 8113658 от 07.02.79 Перепечатка воспрещена Издание официальное

1. ОБШИЕ ПОЛОЖЕНИЯ

- 1.1. Временные ряды показателей строятся по результатам контроля изделий на этапах производства и эксплуатации. При этом считается, что временные ряды являются случайными реализациями процессов изменения показателей.
- 1.2. Стандарт позволяет осуществлять прогноз как стационарных, так и нестационарных со стационарными /7 -ми приращениями временных рядов.
- 1.3. Методы, используемые при прогнозировании, инвариантны к видам показателей и этапам "жизненного цикла" изделий.
 - 1.4. Процесс прогнозирования включает:
 - вычисление прогнозируемых значений;
 - корректирование прогноза;
 - определение доверительных интервалов прогнозируемых значений.

2. МЕТОД ПРОГНОЗИРОВАНИЯ ВРЕМЕННЫХ РЯДОВ

- 2.1. Прогнозирование будущих значений временных рядов осуществляется на основании представления их в виде параметрических моделей:
 - для стационарных временных рядов

$$\phi(B)\bar{P_t} = \Theta(B)\alpha_t, \qquad (1)$$

где ф - параметры авторегрессии;

8 - параметры скользящего среднего;

 $ar{P_t}$ - отклонение значений временного ряда от его среднего значения μ ;

В - оператор сдвига назад.

$$B^{K}P_{t} = P_{t-K}$$
, $K = 0, 1, ..., i, ..., n$;

- для нестационарных временных рядов

$$\phi(B)(1-B)^{d}P_{t} = \theta(B)\alpha_{t}, \qquad (2)$$

- где d число процедур взятия разностей временного ряда для приведения его к стационарному виду.
- 2.2. Определение вида модели и значений ее параметров осуществляется согласно ОСТ 1 00321-78.
- 2.3. Представление модели в виде разностного уравнения осуществляется след дующим образом:

если обобщенный оператор авторегрессии обозначить

$$\phi(B)(1-B)^d = \varphi(B), \tag{3}$$

Же изм.	Xe 138.	
	4000	

то получается

$$\varphi(B) = 1 - \varphi_1 B - \varphi_2 B^2 - \dots - \varphi_{r+d} B^{r+d}. \tag{4}$$

Тогда общая модель представляется в виде

$$\bar{P}_{t} = \varphi_{1} \bar{P}_{t-1} + \dots + \varphi_{r+d} \bar{P}_{t-r-d} - \Theta_{1} \alpha_{t-1} - \dots - \Theta_{q} \alpha_{t-q} + \alpha_{t}$$
, (5)

где 7 - число параметров авторегрессии;

q - число параметров скользящего среднего.

Такое представление модели называется разностным уравнением и используется для прогнозирования временных рядов

$$\bar{P}_{t+l} = \varphi_1 \bar{P}_{t+l-1} + \dots + \varphi_{r+d} \bar{P}_{t+l-r-d} - \Theta_1 \alpha_{t+l-1} - \dots - \Theta_q \alpha_{t+l-q} + \alpha_{t+l}, \quad (6)$$

где L - упреждение прогноза в момент t .

2.4. Корректирование прогноза производится с помощью оператора авторегрессии

$$\bar{P}_{+} = \phi_{1} \bar{P}_{+-1} + \phi_{2} \bar{P}_{+-2} + \dots + \phi_{r} \bar{P}_{+-r} + \alpha_{+} , \qquad (7)$$

значение $ar{P}_{t-1}$ может быть, в свою очередь, выражено как

$$\bar{P}_{t-1} = \phi_1 \bar{P}_{t-2} + \phi_2 \bar{P}_{t-3} + \dots + \phi_r \bar{P}_{t-r-1} + \alpha_{t-1}. \tag{8}$$

Исключая таким же образом \bar{P}_{t-2} и т.д., получаем бесконечный ряд из импрульсов α , т.е. модель

$$\phi(B)\bar{P}_{t} = \alpha_{t} \tag{9}$$

принимает вид

$$\tilde{P}_{\perp} = \psi(B) \alpha_{\perp} , \qquad (10)$$

при $\psi(B) = \phi^{-1}(B)$.

Такое представление модели через текущее и предшествующие значения импульсов α используется для корректирования прогноза. На основании того, что прогнозы $\bar{P}_{t+1}(\ell)$ и $\bar{P}_{t}(\ell+1)$ будущего значения $\bar{P}_{t+\ell+1}$, сделанные в моменты (t+1) и t , выражаются как

$$\bar{P}_{t+1}(l) = \psi_{l} \alpha_{t+1} + \psi_{l+1} \alpha_{t} + \psi_{l+2} \alpha_{t-1} + \dots + \psi_{l+n} \alpha_{t-(n-1)}$$

$$\bar{P}_{t}(l+1) = \psi_{l+1} \alpha_{t} + \psi_{l+2} \alpha_{t-1} + \dots + \psi_{l+n} \alpha_{t-(n-1)}$$
(11)

определяется прогнозируемое значение

$$\bar{P}'_{\pm}(l) = \bar{P}_{t-1}(l+1) + \psi_{l} \alpha_{\pm}. \tag{12}$$

4000

2.5. Доверительные интервалы прогнозируемых значений определяются из предположения, что импульсы 🗸 подчинится нормальному закону распределения; вычисление доверительных интервалов прогнозируемых значений осуществляется по $A_{np} = U_{np} \left\{ 1 + \sum_{i=1}^{l-1} \psi_{i}^{2} \right\}^{0.5} \left(\frac{s'}{N} \right)^{0.5},$ формуле (13)

при S' = 0.25S,

 U_{no} - квантиль уровня (1 - $\mathcal{E}/2$) стандартного нормального распределения;

S – безусловная сумма квадратов последовательности импульсов α :

N - число наблюдений стационарного временного ряда.

3. АЛГОРИТМ ПРОГНОЗИРОВАНИЯ

- 3.1. Входные данные:
- число наблюдений временного ряда N :
- значения временного ряда $\{\bar{P}_t\}$, $t=1,2,\ldots,N$;
- вид и порядок модели временного ряда r,q,d ;
- значения параметров модели

$$\dot{\phi}_i$$
, $\dot{i}=1,\ldots,r$; Θ_j , $j=1,\ldots,q$;

- интервал прогнозирования 🕹 пр ;
- квантиль уровня (1- $\mathcal{E}/2$) стандартного нормального распределения \mathcal{U}_{no} .
- 3.2. Определение последовательности импульсов а,
- 3.2.1. Вычисление последовательности случайных импульсов $oldsymbol{e}_{oldsymbol{+}}$ по формуле

$$e_{t} = \bar{P}_{t} - \phi_{1} \bar{P}_{t+1} - \dots - \phi_{r} \bar{P}_{t+r} + \theta_{1} e_{t+1} + \dots + \theta_{q} e_{t+q},$$

$$\text{при } t = 1, 2, \dots, N-r.$$
(14)

по формуле

$$\bar{P}_{t} = e_{t} + \phi_{1} \bar{P}_{t+1} + \dots + \phi_{p} \bar{P}_{t+p} - \theta_{1} e_{t+1} - \dots - \theta_{q} e_{t+q} , \qquad (15)$$

Ne nogannun

при t =0, -1, -2, . . ., T; e_t =0, где T — момент времени, при котором $\left| \frac{\bar{P_t}}{t} \right| \le$ 0,01.

3.2.3. Вычисление последовательности случайных импульсов 🙇 производится по формуле

$$\alpha_{t} = \bar{\rho}_{t} - \phi_{t} \bar{\rho}_{t-1} - \dots - \phi_{r} \bar{\rho}_{t-r} + \theta_{t} \alpha_{t-1} + \dots + \theta_{q} \alpha_{t-q},$$

$$\text{при } t = T, \dots, \theta_{t}, \dots, N-r; \quad \alpha_{-t} = \theta, \quad t > T-1.$$
(16)

3.3. Вычисление прогноза из разностного уравнения производится по формуле

$$\hat{P}_{t}(l) = \sum_{j=1}^{L} \left\{ \psi_{j} \hat{P}_{t}(l-j) \right\} + \sum_{l=1}^{r+d-l} \left\{ \psi_{l+l} P_{t-l} \right\} + \alpha_{t+l} - \sum_{K=1}^{q} \theta_{K} \alpha_{t+l-K}$$
(17)
$$\mu_{\text{JMR}} \quad l = 1, 2, \dots, L_{np}, \quad \hat{P}_{t}(0) = 1.$$

3.4. Вычисление доверительных интервалов прогнозируемых значений

3.4.1. Вычисление суммы квадратов последовательности случайных импульсов производится по формуле

$$S = \sum_{t=1}^{N} \alpha_t^2 . \tag{18}$$

3,4,2. Вычисление доверительных интервалов производится по формулам

$$A_{\pi\rho}(l) = u_{\pi\rho} \left\{ 1 + \sum_{j=1}^{l-1} \psi_j^2 \right\}^{0,5} \left(\frac{s'}{N} \right)^{0,5}, \tag{19}$$

$$\left(\vec{G}_{t+L} \right)_{t} = \hat{P}_{t}(L) + A_{\pi p}(L) ,$$

$$\left(\vec{G}_{t+L} \right)_{2} = \hat{P}_{t}(L) - A_{\pi p}(L) .$$

$$(20)$$

3.5. Корректирование прогноза

3.5.1. Вычисление поправки производится по формуле

$$A_{t} = P_{t} - \hat{P}_{t-1} (1). \tag{21}$$

3,5,2. Вычисление подправленных значений прогнозов производится по формуле

$$\hat{\rho}_{t}^{\Psi}(l) = \hat{\rho}_{t-1}(l+1) + \psi_{l} A_{t}, \qquad (22)$$

при $l = 1, 2, ..., (L_{np} - 1).$

- 3.6. Выходные данные:
- прогнозируемые значения временного ряда, полученные из разностного уравнения $\stackrel{\wedge}{P}_{+}(t)$;

- прогнозируемые значения, полученные подправлением $\stackrel{\wedge}{P}_{+}^{\psi}(L)$;

- доверительные интервалы прогнозируемых значений в зависимости от интервала прогнозирования $(\mathcal{G}_{t+L})_t$, $(\mathcal{G}_{t+L})_2$.
- 3.7. Блок-схема алгоритма прогнозирования приведена в рекомендуемом приложении 1.
- 3.8. Пример прогновирования временных рядов приведен в справочном приложении 2.

	OCT 1 00320-78 стр. 6
	<u> </u>
	ПРИЛОЖЕНИЕ 1 Рекомендуемое
	Блок-схема алгоритма прогнозирования
	Distriction and opining host hoorpotential
	Начало
	Пачало
	Ввод
	исходных
	данных
	Bunnorows
111	Вычисление $oldsymbol{arepsilon}_{oldsymbol{\bot}}$ по формуле
	е по формуле (14) t = 1, , N-г
	Вычисление
	Р ₊ по фор ₋
	муле (15)
 	
	Вычисление
	α _τ по фор- муле (16) t=T,,O,,N-7°
	$T=1, \dots, 0, \dots, N-7$
38.	
Ne #3	Вычисление
i ziz	прогноза
	уравнения (17)
	Вычисление доверительных
	интервалов по
4000	формулам (19), (20)
	Подправление
	прогнозов
	по формулам (21), (22)
MATZ MATZ	Вывод Конец
Ме дублината Ме подлинана	
호 호	
Z Z Z	

ПРИЛОЖЕНИЕ 2 Справочное

ПРИМЕР ПРОГНОЗИРОВАНИЯ ВРЕМЕННЫХ РЯДОВ

1. ИСХОДНАЯ ИНФОРМАЦИЯ ДЛЯ РАСЧЕТА

1.1. Входные данные:

- число значений временного ряда №=24;
- значения временного ряда, сведенные в табл. 1.

Таблица 1

•											10
	Pt	0,92	0,90	0,88	0,87	0,92	0,91	0,91	0,94	0,92	0,92

Продолжение табл. 1

t	11	12	13	14	15	16	17	18	19	20
Pt	0,90	0,94	0,93	0,94	0,94	0,92	0,93	0,93	0,94	0,91

Продолжение табл. 1

t	21	22	23	24
P_t	0,92	0,94	0,94	0,94

1.2. Для данного временного ряда была получена модель вида

$$0.6 \, \bar{P}_t = 0.2 a_t$$

с параметрами:

- порядок нестационарности d =0;
- порядок авторегрессии 7°=1;
- порядок скользящего среднего Q =1;
- параметр авторегрессии ϕ =0,6;
- **параметр** скользящего среднего θ =0.2.
- 1.3. Для вычисления доверительных интервалов прогнозов необходимы значения квантилей $(1-\mathcal{E}/2)$ % стандартного нормального распределения, представленные в табл. 2.

Таблица 2

Пределы, %	50	90	95
Квантили	0,674	1,650	1,960

- 1.4. В результате расчета нужно получить:
- прогнозируемые значения ряда на $L_{\eta p}$ =1, 2, 3, 4;
- скорректированные значения на $L_{np}=1, 2, 3;$
- вероятностные пределы прогнозов,
- 1.5. Результаты расчета удобно представить в виде таблицы, графы которой соответствуют времени упреждения, а строки - моментам времени, на которые осуществляется прогноз. Таким образом, прогнозируемые значения располагаются по диагонали таблицы, скорректированные значения располагаются в таблице под соответствующими прогнозируемыми значениями,
 - 2. ПОСЛЕДОВАТЕЛЬНОСТЬ РАСЧЕТА
 - 2.1. Приведение ряда к стационарному виду
- 2.1.1. В данном случае процесс стационарен (d =0), следовательно, приводить его к стационарному виду не надо.
 - 2.2. Вычисление последовательности случайных импульсов
- 2.2.1. Вычисление приведенных значений временного ряда (если имели место процедуры взятия разностей вследствие нестационарности исходного ряда, этот пункт не нужен) производится по формуле

$$\tilde{P}_t = P_t - \mu ,$$

 $t=1,\ldots,N,$

₹ 138.

900

M ROLAKHHAR fur. Ne gybnunara

где μ - математическое ожидание ряда, вычисляемое по формуле

$$\mu = \frac{1}{N} \sum_{t=1}^{N} P_t$$

 $\mu = \frac{1}{N} \sum_{t=1}^{N} P_{t},$ $\mu = 0.042 \cdot (0.92 + 0.90 + 0.88 + \dots + 0.94) = 0.921,$

$$\bar{P}_{1} = 0.920 - 0.921 = -0.001;$$

$$\bar{P}_2 = 0.900 - 0.921 = -0.021;$$

$$\bar{P}_{24} = 0.940 - 0.921 = 0.019$$
.

Приведенные значения ряда сведены в табл. З.

Таблица З

t	1	2	3	4	5	6	. 7	8	9
P _t	_0,001	-0,021	-0,041	-0,051	-0,001	-0,011	-0,011	0,019	-0,001

Продолжение табл. 3

t	10	11	12	13	14	15	16	17	18
Pt	-0,001	-0,021	0,019	0,009	0,019	0,019	-0,001	0,009	0,009

Продолжение табл. 3

t	19	20	21	22	23	24
Pt	0,019	-0,011	-0,001	0,019	0,019	0,019

2.2.2. Вычисление последовательности e_{t} производится по формуле:

$$e_t = \tilde{\rho}_t - \phi \tilde{\rho}_{t+1} + \Theta e_{t+1}$$

при $t = 23, 22, \ldots, 1,$

€24 = O;

 $e_{23} = 0.019 - 0.6 \cdot 0.019 = 0.0076;$

 $e_{00} = 0.019 - 0.6 \cdot 0.019 + 0.2 \cdot 0.0076 = 0.0078;$

 $e_{2i} = -0.001 - 0.6 \cdot 0.019 + 0.2 \cdot 0.0078 = -0.0084$

ej= ...

Результаты расчета e_{t} сведены в табл. 4.

Таблица 4

	t	23	22	21	20	19	18	17	16
T	\$ _t	0,0076	0,0078	-0,0084	-0,0118	0,0232	0,0220	0,0080	0,0048

Продолжение табл. 4

	t	15	14	13	12	11	10	9	8
.	e_{t}	0,0197	0,0115	-0,0001	0,0136	-0,0297	0,0055	0,0007	0,0197

Продолжение табл. 4

t	7	6	5	4	3	2	1
e _t	-0,0185	-0,0081	0,0040	-0,0412	-0,0461	_0,0056	0,0105

2.2.3. Вычисление значений временного ряда $ar{P}_{t}$ для $t \leq 0$ производится

по формуле $\bar{P}_{t} = \phi \, \bar{P}_{t+1} - \Theta \, e_{t+1},$

при $\xi_t = 0$ и $t = 0, -1, \dots, \Gamma;$ где Γ – время, при котором $\frac{\overline{\rho}}{t} \le 0,01;$

 $P_o \approx 0.6 \cdot (-0.001) - 0.2 \cdot 0.0105 \approx -0.003.$

Вследствие этого получаем Г=0.

2.2.4. Вычисление последовательности \mathcal{Q}_{+} производится по формуле

$$a_t = \bar{P}_t - \phi P_{t-1} + \theta a_{t-1}$$

при t = 0, ..., 23,

 $\alpha_n = -0.0027$

 $a_1 = -0.001 - 0.6(-0.0027) + 0.2(-0.0027) = -0.0013$

 $a_2 = -0.021 - 0.6(-0.001) + 0.2(-0.0013) = -0.0206$

Результаты вычислений сведены в табл. 5.

Таблица 5

t	0	1	2	3	4	5	6	7
a_t	-0,0027	-0,0013	-0,0206	-0,0325	-0,0311	0,0234	-0, 0078	- 0 , 0106

Продолжение табл. 5

t	<u> </u>	. 8	9	10	11	12	13	14	15
0	2 _t	0,0235	-0,0078	-0,0006	-0,0205	0,0275	0,0031	0,0142	0,0104

Продолжение табл. 5

t	16	17	18	19	20	21	22	23
a_t	-0,0099	0,0076	0,0051	0,0146	-0,0195	0,0017	0,0199	0,0116

Продолжение табл. 5

t	24
a_t	0,0099

2.3. Вычисление прогнозов из разностного уравнения

2.3.1. Производится вычисление коэффициентов $oldsymbol{arphi}_i$

$$\varphi_{1} = \varphi_{1} - d \varphi_{0} = 0,6;$$

$$\varphi_{2} = \varphi_{2} - d \varphi_{1} - \frac{d(d-1)}{1 \cdot 2} \varphi_{0} = 0;$$

$$\varphi_{\mathbf{x}} = \varphi_{\mu} = \dots = 0.$$

2.3.2 Вычисляются коэффициенты ψ_j

$$\psi_{i} = \psi_{i} - \theta_{i} = 0.60 - 0.20 = 0.40;$$

$$\psi_2 = \psi_1 \psi_1 + \psi_2 = 0.6 \cdot 0.4 = 0.24;$$

$$\psi_i = \dots$$

4000

Результаты вычислений сведены в табл. 6.

Таблица 6

j	1	2	3	. 4	5	6	7	8
ψ_{j}	0,40	0,24	0,144	0,086	0,052	0,031	0,019	0,011

2.3.3. Для осуществления корректирования прогноза необходимо иметь для одного и того же момента времени спрогнозированное и реальное значения временного ряда, поэтому прогноз осуществляется с момента t = 23.

Разностное уравнение имеет вид:

$$\bar{P}_{t} = 0.6 \; \bar{P}_{t-1} + a_{t} - 0.2 \; a_{t-1}$$

Вычисление прогнозов приведенного ряда проводится следующим образом:

$$\hat{\overline{P}}_{23}(1) = 0.6 \cdot 0.0190 + 0.0116 - 0.2 \cdot 0.0199 = 0.0191;$$

$$\hat{\overline{P}}_{23}(2) = 0.6 \cdot 0.0191 - 0.2 \cdot 0.0116 = 0.0091;$$

$$\hat{\overline{P}}_{23}(3) = 0.6 \cdot 0.0091 = 0.0054;$$

$$\vec{P}_{02}(4) = 0.6.0,0054 = 0.0032.$$

Вычисление прогнозов ряда проводится следующим образом:

$$\hat{P}_{23}(4) = 0.921 + 0.0191 = 0.9401;$$

$$\hat{P}_{23}(2) = 0.921 + 0.0091 = 0.9301;$$

$$\hat{P}_{23}(3) = 0.921 + 0.0054 = 0.9264;$$

$$\hat{P}_{23}(4) = 0.921 + 0.0032 = 0.9242.$$

4000

- 2.4. Вычисление доверительных интервалов
- 2.4.1. Вычисление суммы квадратов последовательности случайных импульсов проводится по формуле

$$S = \sum_{t=0}^{24} \alpha_t^2,$$

$$S = (-0.0027)^2 + (-0.0013)^2 + \dots + 0.0099^2 = 0.0114;$$
 $S' = 0.0028.$

2.4.2. Из таблицы квантилей стандартного нормального распределения выбирается значение, соответствующее требуемым пределам в процентах, например: $U_{no} = 1.960$ для пределов 95%-ной вероятности.

Вычисление доверительной области прогнозируемых значений проводится следующим образом:

$$A_{np}(1) = 1,96 \cdot (0,0028/24)^{0,5} = 0,0216;$$

$$A_{np}(2) = 1,96 \cdot (1+0,40^2)^{0,5} (0,0028/24)^{0,5} = 0,0230;$$

$$A_{np}(3) = 1,96 \cdot (1+0,40^2+0,24^2)^{0,5} (0,0028/24)^{0,5} = 0,0234;$$

$$A_{np}(4) = 1,96 \cdot (1+0,40^2+0,24^2+0,144^2)^{0,5} (0,0028/24)^{0,5} = 0,0236.$$

2.4.3. Вычисление доверительных интервалов проводится следующим образом:

$$(G_{2\mu})_{i} = 0.9401 + 0.0216 = 0.9612,$$

$$(G_{24})_2$$
 =0,9401 - 0,0216=0,8760;

$$(\mathcal{G}_{25})_1 = 0.9301 + 0.0230 = 0.9532,$$

$$(6_{25})_2 = 0,9301 - 0,0230 = 0,8620;$$

$$(G_{26})_{1} = 0.9264 + 0.0234 = 0.9500$$

$$(\mathcal{G}_{26})_2$$
 =0,9264 - 0,0234 = 0,8561;

$$(G_{27})_1 = 0.9242 + 0.0236 = 0.9474;$$

$$(G'_{27})_2 = 0,9242 - 0,0236 = 0,8533.$$

- 2.5. Корректирование прогноза
- 2.5.1. Вычисление поправки производится следующим образом: $\alpha_{24} = \bar{P}_{24} \hat{\bar{P}}_{23} \ (1)_2$

$$\alpha_{24} = \vec{P}_{24} - \hat{\vec{P}}_{23} (1)$$

 $a_{2\mu}$ = 0,0190 - 0,0191 = -0,0001.

2.5.2. Вычисление скорректированных значений прогнозов приведенного ряда производится следующим образом:

$$\hat{\vec{P}}_{24}^{\psi}(1) = 0.0091 + 0.40(-0.0001) = 0.00896;$$

$$\hat{\vec{P}}_{24}^{\psi}(2) = 0.0054 + 0.24(-0.0001) = 0.00538;$$

$$\hat{\vec{P}}_{24}^{\psi}(3) = 0.0032 + 0.14(-0.0001) = 0.00319.$$

2.5.3. Вычисление скорректированных значений ряда производится следующим образом:

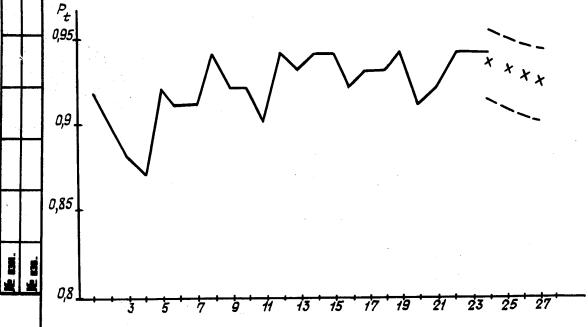
$$P_{24}^{\psi}(1) = 0.921 + 0.00896 = 0.9300;$$

$$P_{24}^{\psi}(2) = 0.9264;$$

$$P_{24}(2) = 0.9264;$$

$$\hat{P}_{24}^{\Psi}(3) = 0.9242.$$

Результаты расчета сведены в табл. 7 и 8.


Таблица 7

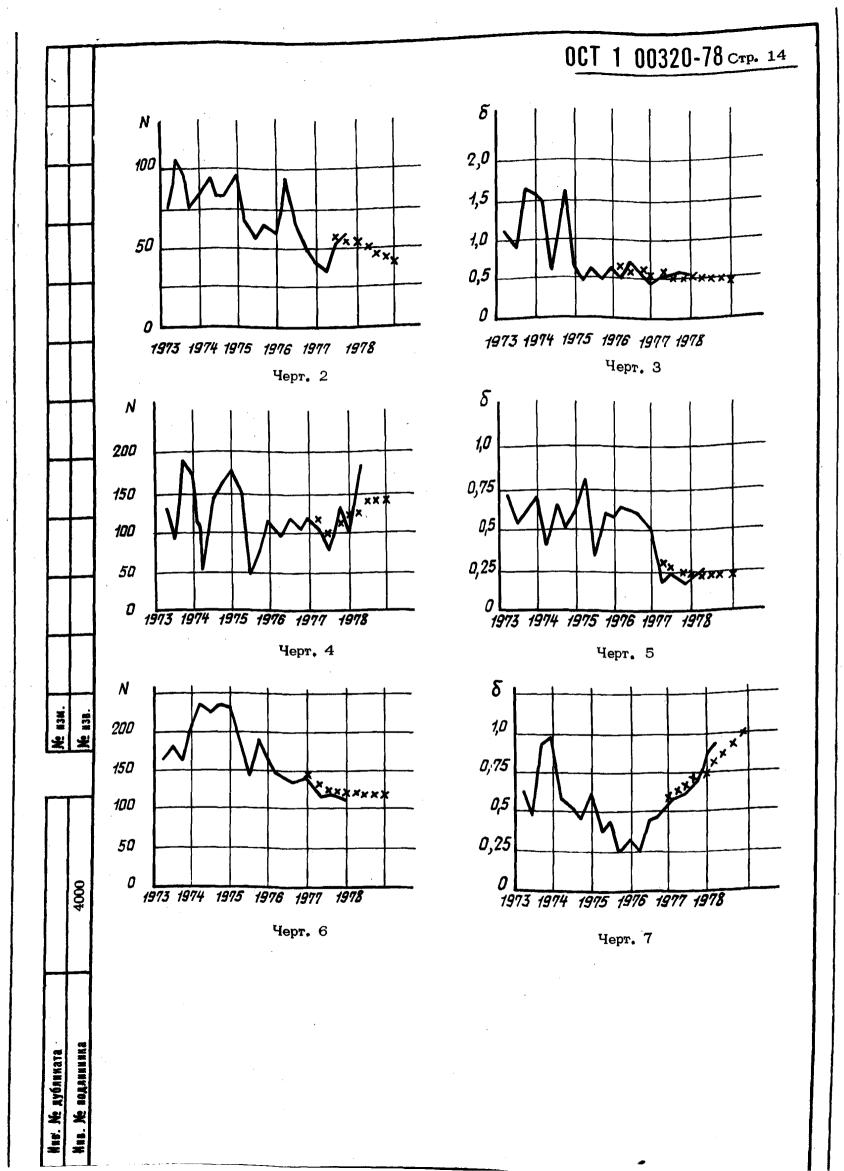
Время упреждения	1	2	3	4	
95%-ной предел вероят-	0,0216	0,0230	0,0234	0,0236	
HOCTH					

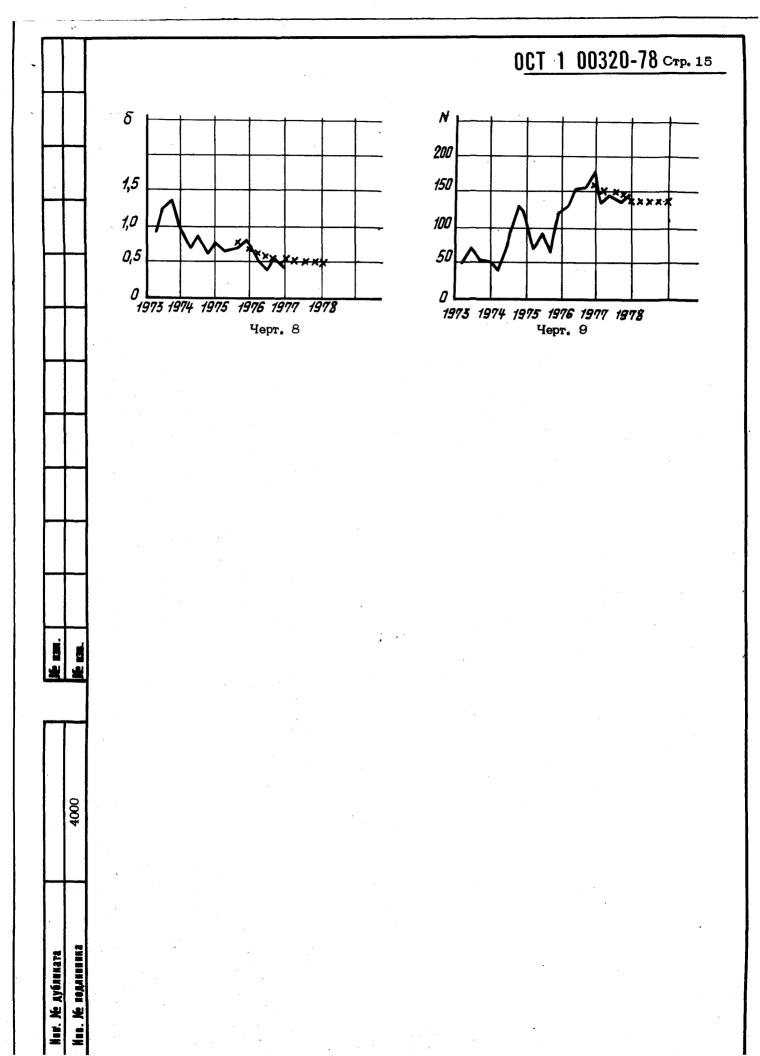
Таблица 8

+		_	Время упреждения					
L	Pt	a_t	1	2	. 3	4		
 23	0,94	-	-	•	-	-		
24	0,94	-0,0001	0,9401	-	-	-		
25	-	-	0,9300	0,9301	-	_		
26	-			0,9264	0,9264	-		
27	.	-	•	•	0,9242	0,9242		

Результаты прогноза приведены на черт. 1

Обозначения:


Х - прогноз


4000

____ - доверительные интервалы

Черт. 1

2.5.4. На черт. 2 – 9 представлены примеры прогновирования реальных временных рядов таких показателей, как наработка на отказ (N) и процент брака (δ).

4000	
подлинника	
2	
Инв	

	Номера страниц				Номер			
№ ИЗМ.	Изме- ненных	Заме- ненных	Новых	Анну- лиро- венных	"Изв. об изм."	Подпись	Дата	Срок введения изменения
1	1		*****		9040	Sfr	22.05.84	01.07.84
Ł	1	_		_	9040 9339	Aff	1585	
					ļ .			
					ŀ			
							i.	
						. •		
								:
							. •	
			•					
			`.					
	 -	· .						
	}				٠			
)							
			,					