МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ (МГС)

INTERSTATE COUNCIL FOR STANDARDIZATION, METROLOGY AND CERTIFICATION (ISC)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ FOCT ISO 2320— 2015

Гайки стальные самостопорящиеся

МЕХАНИЧЕСКИЕ И ЭКСПЛУАТАЦИОННЫЕ СВОЙСТВА

(ISO 2320:2008, IDT)

Издание официальное

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0–92 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2–2009 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены»

Сведения о стандарте

- 1 ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием «Центральный ордена Трудового Красного Знамени научно-исследовательский автомобильный и автомоторный институт «НАМИ» (ФГУП «НАМИ») на основе собственного аутентичного перевода на русский язык англоязычной версии стандарта, указанного в пункте 5
 - 2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии (Росстандарт)
- 3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 29 сентября 2015 г. № 80-П)

ο-			
зa	принятие	проголо	совали:

Краткое наименование страны по МК (ИСО 3166) 004—97	Код страны по МК (ИСО 3166) 004—97	Сокращенное наименование национального органа по стандартизации
Азербайджан	AZ	Азстандарт
Армения	AM	Минэкономики Республики Армения
Беларусь	BY	Госстандарт Республики Беларусь
Грузия	GE	Грузстандарт
Казахстан	KZ	Госстандарт Республики Казахстан
Киргизия	KG	Кыргызстандарт
Молдова	MD	Молдова-Стандарт
Россия	RU	Росстандарт
Таджикистан	TJ	Таджикстандарт
Туркменистан	ТМ	Главгосслужба «Туркменстандартлары»
Узбекистан	UZ	Узстандарт
Украина	UA	Минэкономразвития Украины

- 4 Приказом Федерального агентства по техническому регулированию и метрологии от 25 мая 2016 г. № 399-ст межгосударственный стандарт ГОСТ ISO 2320—2015 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2018 г.
- 5 Настоящий стандарт идентичен международному стандарту ISO 2320:2008 «Гайки стальные самостопорящиеся. Механические и эксплуатационные свойства» («Prevailing torque type steel nuts Mechanical and performance properties», IDT).

Международный стандарт разработан подкомитетом ISO/TC 2/SC 1 «Механические свойства крепежных изделий» технического комитета по стандартизации ISO/TC 2 «Крепежные изделия» Международной организации по стандартизации (ISO).

Перевод с английского языка (en).

Официальные экземпляры международного стандарта, на основе которого подготовлен настоящий межгосударственный стандарт, и международных стандартов, на которые даны ссылки, имеются в Федеральном агентстве по техническому регулированию и метрологии.

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им межгосударственные стандарты, сведения о которых приведены в дополнительном приложении ДА.

Степень соответствия — идентичная (IDT)

6 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе «Национальные стандарты» по состоянию на 1 января текущего года, а текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

© Стандартинформ, 2016

В Российской Федерации настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

Содержание

1 Область прим	иенения	1
	ССЫЛКИ	
	ределения	
	е свойства самостопорящихся гаек	
	онные требования к стопорящим свойствам	
9 Методы испы	таний	19
	оложения	
	ие пробной нагрузкой	
	ие стопорящего момента	
Приложение А	(обязательное) Температурная стойкость самостопорящихся гаек	
	с неметаллической вставкой	23
Приложение В	(справочное) Основные положения для оценки общего коэффициента трения μ_{tot} .	24
Приложение ДА	(справочное) Сведения о соответствии ссылочных международных стандартов	
	ссылочным межгосударственным стандартам	25
Библиография		26

Гайки стальные самостопорящиеся

МЕХАНИЧЕСКИЕ И ЭКСПЛУАТАЦИОННЫЕ СВОЙСТВА

Prevailing torque type steel nuts.

Mechanical and performance properties

Дата введения — 2018—01—01

1 Область применения

Настоящий стандарт устанавливает механические и эксплуатационные свойства самостопорящихся гаек при испытаниях в диапазоне температур окружающей среды от 10 °C до 35 °C, включая отдельное испытание по определению стопорящих свойств (эксплуатационных свойств) и/ или свойств стопорящего момента и усилия предварительной затяжки.

Настоящий стандарт распространяется на самостопорящиеся гайки цельнометаллические и самостопорящиеся гайки с неметаллической вставкой:

- а) с треугольной резьбой по ISO 68-1;
- b) с комбинациями диаметров и шагов по ISO 261 и ISO 262;
- с) с крупным шагом резьбы от M3 до M39 и механическими свойствами по ISO 898-2;
- d) с мелким шагом резьбы от M8x1 до M39x3 и механическими свойствами по ISO 898-2;
- e) в диапазоне температур от минус 50 °C до плюс 150 °C для цельнометаллических гаек.

Примечание 1 — См. раздел 7, абзац 3;

f) в диапазоне температур от минус 50 °C до плюс 120 °C для гаек с неметаллической вставкой.

Примечание 2 — См. раздел 7, абзац 4.

2 Нормативные ссылки

Для применения настоящего стандарта необходимы следующие ссылочные документы. Для датированных ссылок применяют только указанное издание ссылочного документа, для недатированных ссылок применяют последнее издание ссылочного документа (включая все изменения).

ISO 273:1979 Fasteners — Clearance holes for bolts and screws (Изделия крепежные — Отверстия с зазором для болтов и винтов)

ISO 898-1 Mechanical properties of fasteners made of carbon steel and alloy steel — Part 1: Bolts, screws and studs with specified property classes — Coarse thread and fine pitch thread (Механические свойства крепежных изделий из углеродистых и легированных сталей — Часть 1. Болты, винты и шпильки установленных классов прочности — Крупный и мелкий шаг резьбы)

ISO 898-2 Mechanical Properties of fasteners made of carbon steel and alloy steel — Part 2: Nuts with specified property classes — Coarse thread and fine pitch thread (Механические свойства крепежных изделий из углеродистых и легированных сталей. Часть 2. Гайки установленных классов прочности — Крупный и мелкий шаг резьбы)

ISO 898-6¹⁾ Mechanical properties of fasteners — Part 6: Nuts with specified proof load values — Fine pitch thread (Механические свойства крепежных изделий — Часть 6. Гайки с установленными значениями контрольной нагрузки — Мелкий шаг резьбы)

то Стандарт заменен на ISO 898-2:2012. Однако для однозначного соблюдения требования настоящего стандарта, выраженного в датированной ссылке, рекомендуется использовать только указанное в этой ссылке издание.

ISO 965-2 ISO general purpose metric screw threads — Tolerances — Part 2: Limits of sizes for general purpose external and internal screw threads — Medium quality (Резьбы метрические ISO общего назначения — Допуски — Часть 2. Предельные размеры для наружной и внутренней резьб общего назначения. Средний класс точности)

ISO 16047 Fasteners — Torque/clamp force testing (Изделия крепежные — Испытания крутящего момента и усилия предварительной затяжки)

3 Термины и определения

В настоящем стандарте применены термины по ISO 16047, а также следующие термины с соответствующими определениями:

- 3.1 гайка самостопорящаяся (prevailing torque type nut): Гайка, которая не может свободно вращаться по сопряженной резьбе ввиду наличия в ней элемента, создающего стопорящий момент, и которая обеспечивает сопротивление вращению, не зависящее от усилия затяжки.
- 3.2 **стопорящий момент гайки** (prevailing torque developed by the nut): Крутящий момент, необходимый для вращения гайки по наружной резьбе сопряженной детали при отсутствии осевой нагрузки.
- 3.3 **стопорящий момент при закручивании** (prevailing-on torque): Крутящий момент для вращения гайки по наружной резьбе сопряженной детали, измеренный в процессе закручивания гайки при отсутствии усилия затяжки.
- 3.4 **стопорящий момент при откручивании** (prevailing-off torque): Крутящий момент для вращения гайки по наружной резьбе сопряженной детали на 360° после снятия усилия предварительной затяжки.
- 3.5 гайка самостопорящаяся цельнометаллическая (prevailing torque all metal type nut): Гайка, имеющая цельную и составную металлическую конструкцию, у которой характеристики стопорящего момента зависят от контролируемой деформации резьбы и/или основания гайки или металлической вставки (металлических вставок).
- 3.6 гайка самостопорящаяся с неметаллической вставкой (prevailing torque non-metallic insert type nut): Гайка, имеющая составную конструкцию, в которой характеристики стопорящего момента зависят от зафиксированной в гайке вставки (вставок) из неметаллического материала.
- 3.7 **точка посадки** (seating point): Точка, в которой при затяжке появляется усилие предварительной затяжки.

4 Обозначения

В настоящем стандарте применены обозначения по ISO 16047, а также следующие обозначения:

- d номинальный диаметр:
- d_4 диаметр отверстия в приспособлении;
- $F_{\rm D}$ пробная нагрузка;
- $\dot{F_{65}}$ нижнее предельное значение нагрузки для определения общего коэффициента трения при 65 % от $F_{\rm p}$;
- F_{75} верхнее предельное значение нагрузки для определения общего коэффициента трения при 75 % от $F_{\rm p}$;
- F_{80} испытательное усилие зажима (усилие, при котором заканчивают процесс затяжки) при 80 % от $F_{\rm D}$;
- шаг резьбы;
- $\mathcal{T}_{\mathsf{Fv}}$ стопорящий момент при закручивании, Н м;
- T_{Fd} стопорящий момент при откручивании, Н·м;
- T_{65} нижнее предельное значение крутящего момента для определения общего коэффициента трения при F_{65} ;
- T_{75} верхнее предельное значение крутящего момента для определения общего коэффициента трения при F_{75} ;
- T_{80} крутящий момент при испытании, соответствующий 80 % пробной нагрузки, Н·м (таблицы 1—8):
- μ_{tot} общий коэффициент трения.

5 Резьба

Резьба самостопорящихся гаек должна соответствовать ISO 965-2, за исключением участка стопорящего элемента:

- а) для самостопорящихся гаек с неметаллической вставкой проходной калибр должен свободно завинчиваться (от руки) до соприкосновения со стопорящим элементом;
- b) для самостопорящихся цельнометаллических гаек проходной калибр должен свободно завинчиваться (от руки) не менее чем на один шаг.

6 Смазка

По усмотрению изготовителя для соблюдения эксплуатационных требований производственной партии применяют смазку.

7 Механические свойства самостопорящихся гаек

Механические свойства самостопорящихся гаек должны соответствовать ISO 898-2.

Для испытания пробной нагрузкой следует применять методы испытаний, установленные в 9.2.

Чтобы сделать выбор по применению самостопорящихся цельнометаллических гаек при температуре, выходящей за пределы диапазона от минус 50 °C до плюс 150 °C, потребитель должен консультироваться с опытным специалистом по материалам крепежных изделий.

При применении самостопорящихся гаек с неметаллической вставкой за пределами диапазона температур от минус 50 °C до плюс 120 °C или близко к предельным температурам может уменьшаться стопорящий момент и может потребоваться использование неметаллических материалов, отвечающих соответствующим требованиям. Чтобы сделать выбор по применению самостопорящихся гаек с неметаллической вставкой при температуре, выходящей за пределы диапазона от минус 50 °C до плюс 120 °C, потребители должны консультироваться с опытным специалистом по материалам крепежных изделий.

8 Эксплуатационные требования к стопорящим свойствам

Стопорящий момент при закручивании не должен превышать значения, приведенные в таблицах 1—8, для применяемой гайки.

Стопорящий момент при откручивании должен превышать значения, приведенные в таблицах 1—8, для применяемой гайки.

Для контроля поставки при приемке проводят испытание при первом закручивании/откручивании, если нет иного соглашения.

При первоначальном контроле и в спорном случае следует также проводить испытание при пяти откручиваниях, если нет иного соглашения.

Характеристики стопорящего момента уменьшаются, как функция от числа повторных использований; при каждом повторном использовании гайки потребитель должен учитывать уменьшение характеристик стопорящего момента.

По требованию заказчика могут проводиться испытания на температурную стойкость самостопорящихся гаек с неметаллической вставкой в соответствии с приложением А.

Абзацы 3 и 4 раздела 7 также относятся к эксплуатационным требованиям.

Т а б л и ц а 1 — Испытательное усилие предварительной затяжки и стопорящие моменты при испытании самостопорящихся гаек класса прочности 04

Резьба	Испытательное усилие зажима	Усилие зажима д общего коэффі µ _t		С	топорящий момен Н·м	∙т ,
d×P	F ₈₀ ^a , H	верхнее предель- ное значение	нижнее предель- ное значение	первое закручивание	первое откручивание	пятое откручивание
		<i>F</i> ₇₅ °, H	F ₆₅ ^d , H	T _{Fv,max} e	T _{Fd,min} f	T _{Fd,min} f
M3	1528	1433	1242	0,43	0,12	0,08
M4	2672	2505	2171	0,9	0,18	0,12
M5	4320	4050	3510	1,6	0,29	0,2
M6	6112	5730	4966	3	0,45	0,3
M7	8800	8250	7150	4,5	0,65	0,45
M8	11120	10425	9035	6	0.95	0,6
M8×1	11920	11175	9685	б	0,85	0,0
M10	17600	16500	14300			
M10×1,25	18640	17475	15145	10,5	1,5	1
M10×1	19600	18375	15925			
M12	25600	24000	20800			
M12×1,5	26800	25125	21775	15,5	2,3	1,6
M12×1,25	28000	26250	22750			
M14	34960	32775	28405	24	2.2	2.2
M14×1,5	38000	35625	30875	24	3,3	2,3
M16	47760	44775	38805	22	4.5	2
M16×1,5	50800	47625	41275	32	4,5	3
M18	58400	54750	47450	42	6	4.0
M18×1,5	65360	61275	53105		6	4,2
M20	74480	69825	60515	54	7.5	5.2
M20×1,5	82720	77550	67210	94	7,5	5,3

Резьба Испытательное усилие зажима		Усилие зажима для опр е деления общего коэффициент а трения		Стопорящий момент, Н·м		
d×P	F ₈₀ ^a , H	верхнее предель- ное значение	ное значение	первое закручивание	первое откручивание	пятое откручивание
		F ₇₅ °, H	F ₆₅ ^d , H	T _{Fv,max} e	$T_{Fd,min}^{f}$	$T_{Fd,min}^{f}$
M22	92080	86325	74815	68	9,5	6,5
M22×1,5	101200	94875	82225	00	9,5	0,5
M24	107280	100575	87165	80	11.5	8
M24×2	116720	109425	94835	80	11,5	•
M27	139520	130800	113360	94	13,5	10
M27×2	150800	141375	122525	94		
M30	170560	159900	138580	108	16	12
M30×2	188800	177000	153400	100	10	
M33	210960	197775	171405	122	18	14
M33×2	231360	216900	187980	122	18	14
M36	248400	232875	201825	126	21	16
M36×3	262960	246525	213655	136	21	16
M39	296720	278175	241085	450	22	18
M39×3	313120	293550	254410	150	23	18

^а Усилие предварительной затяжки для гаек класса прочности 04 составляет 80 % пробной нагрузки гаек класса прочности 04 для 3 мм ≤ d ≤ 39 мм. Пробные нагрузки для гаек установлены в ISO 898-2.

b См. приложение В.

^с Верхнее предельное значение усилия зажима составляет 75 % пробной нагрузки (приложение В).

^d Нижнее предельное значение усилия зажима составляет 65 % пробной нагрузки (приложение В).

^е Стопорящие моменты при первом закручивании являются действительными только для цельнометаллических гаек. Для самостопорящихся гаек с неметаллической вставкой максимальные крутящие моменты должны составлять 50 % от этого значения.

^f Значения данной таблицы обязательны при проведении приемочных испытаний в лабораторных условиях. Использование этого типа крепежа зависит от способа их применения и эффективность этих деталей может меняться при нормальной эксплуатации. Рекомендуется выполнить дополнительное тестирование всего соединения с использованием производственных компонентов, когда возникают вопросы к качеству изделия.

П р и м е ч а н и е — Оценка результатов испытаний стопорящего момента методами статистического контроля процессов (SPC) не применима.

Таблица 2— Испытательное усилие предварительной затяжки и стопорящие моменты при испытании самостопорящихся гаек класса прочности 05

Резьба	Испытательное усилие	Усилие зажима д общего коэффи µ _t ,	ициента трения	С	н,	
d×P	предварительной затяжки $F_{80}{}^{a}$, H	верхнее предельное значение	ное значение	первое закручивание	первое откручивание	пятое откручивание
		F ₇₅ °, H	F ₆₅ ^d , H	T _{Fv,max} e	$T_{Fd,min}^{}f}$	T _{Fd,min} f
М3	2000	1875	1625	0,6	0,15	0,1
M4	3520	3300	2860	1,2	0,22	0,15
M5	5680	5325	4615	2,1	0,35	0,24
M6	8000	7500	6500	4	0,55	0,4
M7	11600	10875	9425	6	0,85	0,6
M8	14640	13725	11895	0	1 15	0.0
M8×1	15680	14700	12740	8	1,15	0,8
M10	23200	21750	18850			
M10×1,25	24480	22950	19890	14	2	1,4
M10×1	25760	24150	20930			
M12	33760	31650	27430			
M12×1,5	35200	33000	28600	21	3,1	2,1
M12×1,25	36800	34500	29900			
M14	46000	43125	37375	31	4.4	3
M14×1,5	50000	46875	40625	31	4,4	3
M16	62800	58875	51025	42	6	4.2
M16×1,5	66800	62625	54275	42	6	4,2
M18	76800	72000	62400	EG	o o	E F
M18×1,5	86000	80625	69875	56	8	5,5
M20	98000	91875	79625	72	10.5	7
M20×1,5	82400	77250	66950	1 2	10,5	7

Резьба Испытательное усилие		Усилие зажима для определения общего коэффициента трения		Стопорящий момент, Н·м		
d×P	предварительной затяжки $F_{80}{}^{a}$, Н	верхнее предельное значение F ₇₅ °, Н	нижнее предель- ное значение <i>F</i> ₆₅ ^d , H	первое закручивание ${T_{\sf Fv,max}}^{\sf e}$	первое откручивание Т _{Fd,min} f	пятое откручивание Т _{Fd,min} f
M22	121200	113625	98475			
M22×1,5	133200	124875	108225	90	13	9
M24	141200	132375	114725	400	45	40.5
M24×2	153600	144000	124800	106	15	10,5
M27	183600	172125	149175	100	17	12
M27×2	198400	186000	161200	123		
M30	224400	210375	182325	4.40	40	14
M30×2	248400	232875	201825	140	19	
M33	277600	260250	225550	160	24.5	1E E
M33×2	304400	285375	247325	160	21,5	15,5
M36	326800	306375	265525	190	24	17.5
M36×3	346000	324375	281125	180	24	17,5
M39	390400	366000	317200		26.5	10.5
M39×3	412000	386250	334750	200	26,5	19,5

^а Усилие предварительной затяжки для гаек класса прочности 05 составляет 80 % пробной нагрузки гаек класса прочности 05 для 3 мм ≤ d ≤ 39 мм. Пробные нагрузки для гаек – по ISO 898-2

b См. приложение В.

с Верхнее предельное значение усилия зажима составляет 75 % пробной нагрузки (приложение В).

^d Нижнее предельное значение усилия зажима составляет 65 % пробной нагрузки (приложение В).

^е Стопорящие моменты при первом закручивании являются действительными только для цельнометаллических гаек. Для самостопорящихся гаек с неметаллической вставкой максимальный крутящий момент должен составлять 50 % от этого значения.

^f Значения данной таблицы обязательны при проведении приемочных испытаний в лабораторных условиях. Использование этого типа крепежа зависит от способа их применения и эффективность этих деталей может меняться при нормальной эксплуатации. Рекомендуется выполнить дополнительное тестирование всего соединения с использованием производственных компонентов, когда возникают вопросы к качеству изделия.

Примечание — Оценка результатов испытаний стопорящего момента методами статистического контроля процессов (SPC) не применима.

Таблица 3 — Испытательное усилие предварительной затяжки и стопорящие моменты при испытании самостопорящихся гаек класса прочности 5

Резьба	Испытательное усилие	Усилие зажима д общего коэффи µ _t ,	ициента трения	Стопорящий момент, Н∙м			
d×P	предварительной затяжки <i>F</i> ₈₀ ^a , H	верхнее предельное значение	ное значение	первое закручивание	первое откручивание	пятое откручивание	
		F ₇₅ ^c , H	F ₆₅ ^d , H	T _{Fv,max} e	$T_{Fd,min}^{}f}$	T _{Ed,min} f	
M3	1528	1433	1242	0,43	0,12	0,08	
M4	2672	2505	2171	0,9	0,18	0,12	
M5	4320	4050	3510	1,6	0,29	0,2	
M6	6112	5730	4966	3	0,45	0,3	
M7	8800	8250	7150	4,5	0,65	0,45	
M8	11120	10425	9035	6	0.95	0,6	
M8×1	11920	11175	9685	6	0,85	0,0	
M10	17600	16500	14300				
M10×1,25	18640	17475	15145	10,5	1,5	1	
M10×1	19600	18375	15925				
M12	25600	24000	20800				
M12×1,5	26800	25125	21775	15,5	2,3	1,6	
M12×1,25	28000	26250	22750				
M14	34960	32775	28405	24	3,3	2,3	
M14×1,5	38000	35625	30875	24	3,3	2,3	
M16	47760	44775	38805	32	4,5	3	
M16×1,5	50800	47625	41275	32	4,0		
M18	58400	54750	47450	40	6	4.2	
M18×1,5	65680	61575	53365	42	6	4,2	
M20	74480	69825	60515	54	7,5	5,3	
M20×1,5	82400	77250	66950	J 4	7,0	J,3	

Резьба Испытательное усилие		Усилие зажима для определения общего коэффициента трения		Стопорящий момент, Н·м		
d×P	предварительной затяжки $F_{80}{}^{a}$, Н	верхнее предельное значение F ₇₅ °, Н	нижнее предель- ное значение <i>F</i> ₆₅ ^d , Н	первое закручивание Т _{Fv,max} е	первое откручивание Т _{Fd,min} f	пятое откручивание т f
		75,''	, 65 , 11	' Fv,max	/ Fd,min	$T_{Fd,min}^{f}$
M22	92000	86250	74750	68	9,5	6,5
M22×1,5	100800	94500	81900	00	9,5	0,5
M24	107200	100500	87100	00	44.5	
M24×2	116800	109500	94900	80	11,5	8
M27	113600	106500	92300	0.4	40.5	40
M27×2	123200	115500	100100	94	13,5	10
M30	139200	130500	113100	100	40	40
M30×2	153600	144000	124800	108	16	12
M33	172000	161250	139750	100	40	44
M33×2	188800	177000	153400	122	18	14
M36	202400	189750	164450	100	0.1	40
M36×3	214400	201000	174200	136	21	16
M39	242400	227250	196950		00	18
M39×3	255200	239250	207350	150	23	

^а Усилие предварительной затяжки для гаек класса прочности 5 составляет 80 % пробной нагрузки болтов класса прочности 5.8 для 3 мм ≤ d ≤ 24 мм и 80 % пробной нагрузки болтов класса прочности 4.8 для d > 24 мм. Пробные нагрузки болтов — по ISO 898-1.

^b См. приложение В.

^с Верхнее предельное значение усилия зажима составляет 75 % пробной нагрузки (приложение В).

^d Нижнее предельное значение усилия зажима составляет 65 % пробной нагрузки (приложение В).

^е Стопорящие моменты при первом закручивании являются действительными только для цельнометаллических гаек. Для самостопорящихся гаек с неметаллической вставкой максимальный крутящий момент должен составлять 50 % от этого значения.

^f Значения данной таблицы обязательны при проведении приемочных испытаний в лабораторных условиях. Использование этого типа крепежа зависит от способа их применения и эффективность этих деталей может меняться при нормальной эксплуатации. Рекомендуется выполнить дополнительное тестирование всего соединения с использованием производственных компонентов, когда возникают вопросы к качеству изделия.

П р и м е ч а н и е — Оценка результатов испытаний стопорящего момента методами статистического контроля процессов (SPC) не применима.

Таблица 4 — Испытательное усилие предварительной затяжки и стопорящие моменты при испытании самостопорящихся гаек класса прочности 6

Резьба	Испытательное усилие	общего коэффі	Усилие зажима для определения общего коэффициента трения ^{ј.ц} tot ^b		деления Стопорящий момент, трения Н·м		
d×P	предварительной затяжки <i>F</i> ₈₀ ^a , H	верхнее предельное значение	нижнее предельное значение	первое закручивание	первое откручивание	пятое откручивание	
		F ₇₅ °, H	F ₆₅ ^d , H	T _{Fv,max} e	T _{Fd,min} f	T _{Ed,min} f	
M3	1768	1658	1437	0,43	0,12	0,08	
M4	3088	2895	2509	0,9	0,18	0,12	
M5	5000	4688	4063	1,6	0,29	0,2	
M6	7072	6630	5746	3	0,45	0,3	
M7	10160	9525	8255	4,5	0,65	0,45	
M8	12880	12075	10465	6	0,85	0,6	
M8×1	13760	12900	11180	O	0,00	0,0	
M10	20400	19125	16575				
M10×1,25	21520	20175	17485	10,5	1,5	1	
M10×1	22720	21300	18460				
M12	29680	27825	24115				
M12×1,5	31040	29100	25220	15,5	2,3	1,6	
M12×1,25	32400	30375	26325				
M14	40480	37950	32890	24	3,3	2.2	
M14×1,5	44000	41250	35750	24	3,3	2,3	
M16	55280	51825	44915	32	4,5	3	
M16×1,5	58800	55125	47775	ა∠	4,U	, s	
M18	67600	63375	54925	42	6	4.0	
M18×1,5	76000	71250	61750		6	4,2	
M20	86400	81000	70200	54	7.5	5.2	
M20×1,5	96000	90000	78000	9 4	7,5	5,3	

Резьба	Усилие зажима для определения общего коэффициента трения а Испытательное усилие		Стопорящий момент, Н·м			
d×P	предварительной затяжки <i>F</i> ₈₀ ^a , H	верхнее предельное значение F ₇₅ °, Н	нижнее предель- ное значение <i>F</i> ₆₅ ^d , H	первое закручивание ${T_{\sf Fv,max}}^{\sf e}$	первое откручивание 7 _{Fd,min} f	пятое откручивание Т _{Fd,min} f
M22	106400	99750	86450			
M22×1,5	116800	109500	94900	68	9,5	6,5
M24	124000	116250	100750		44.5	
M24×2	135200	126750	109850	80	11,5	8
M27	161600	151500	131300	0.4	13,5	10
M27×2	174400	163500	141700	94		
M30	197600	185250	160550	400	16	12
M30×2	218400	204750	177450	108		
M33	244000	228750	198250	122	40	4.4
M33×2	268000	251250	217750	122	18	14
M36	287200	269250	233350	126	24	16
M36×3	304800	285750	247650	136	21	16
M39	343200	321750	278850		22	40
M39×3	362400	339750	294450	150	23	18

^а Усилие предварительной затяжки для гаек класса прочности 6 составляет 80 % пробной нагрузки болтов класса прочности 6.8. Пробные нагрузки для болтов берутся по ISO 898-1.

^b См. приложение В.

с Верхнее предельное значение усилия зажима составляет 75 % пробной нагрузки (приложение В).

^d Нижнее предельное значение усилия зажима составляет 65 % пробной нагрузки (приложение В).

^е Стопорящие моменты при первом закручивании являются действительными только для цельнометаллических гаек. Для самостопорящихся гаек с неметаллической вставкой максимальный крутящий момент должен составлять 50 % от этого значения.

^f Значения данной таблицы обязательны при проведении приемочных испытаний в лабораторных условиях. Использование этого типа крепежа зависит от способа их применения и эффективность этих деталей может меняться при нормальной эксплуатации. Рекомендуется выполнить дополнительное тестирование всего соединения с использованием производственных компонентов, когда возникают вопросы к качеству изделия.

П р и м е ч а н и е — Оценка результатов испытаний стопорящего момента методами статистического контроля процессов (SPC) не применима.

Таблица 5— Испытательное усилие предварительной затяжки и стопорящие моменты при испытании самостопорящихся гаек класса прочности 8

Резьба	Испытательное усилие	общего коэффі	важима для определения Стопорящий мом о коэффициента трения Н⋅м			ент,	
d×P	предварительной затяжки <i>F</i> ₈₀ ^a , H	верхнее предельное значение	ное значение	первое закручивание	первое откручивание	пятое откручивание	
		F ₇₅ ^c , H	F ₆₅ ^d , H	T _{Fv,max} e	$T_{Fd,min}^{}}$	T _{Ed,min} f	
M3	2336	2190	1898	0,43	0,12	0,08	
M4	4080	3825	3315	0,9	0,18	0,12	
M5	6584	6173	5350	1,6	0,29	0,2	
M6	9280	8700	7540	3	0,45	0,3	
M7	13440	12600	10920	4,5	0,65	0,45	
M8	16960	15900	13780	6	0.05	0.6	
M8×1	18160	17025	14755	6	0,85	0,6	
M10	26960	25275	21905				
M10×1,25	28400	26625	23075	10,5	1,5	1	
M10×1	29920	28050	24310				
M12	39120	36675	31785				
M12×1,5	40880	38325	33215	15,5	2,3	1,6	
M12×1,25	42720	40050	34710				
M14	53360	50025	43355	24	2.2	2.2	
M14×1,5	58000	54375	47125	24	3,3	2,3	
M16	72800	68250	59150	32	4,5	3	
M16×1,5	77520	72675	62985	ა∠	4,U		
M18	92000	86250	74750	40	e	4.2	
M18×1,5	104000	97500	84500	42	6	4,2	
M20	117600	110250	95550	54	7.5	5.2	
M20×1,5	130400	122250	105950	94	7,5	5,3	

Резьба	Испытательное усилие	Усилие зажима для определения общего коэффициента трения µ _{tot} ^b		Стопорящий момент, Н·м		
d×P	Іппелварительной	верхнее предельное значение $F_{75}^{\ \ c}$, Н	нижнее предель- ное значение <i>F</i> ₆₅ ^d , H	первое закручивание Т _{Ev,max} е	первое откручивание Т _{Fd,min} f	пятое откручивание Т _{Fd,min} ^f
M22	145600	136500	118300	_	0.5	6,5
M22×1,5	160000	150000	130000	68	9,5	
M24	169600	159000	137800	80	11,5	8
M24×2	184000	172500	149500			
M27	220000	206250	178750	94	13,5	10
M27×2	238400	223500	193700			
M30	269 600	252750	219050	108	16	12
M30×2	298400	279750	242450	106		
M33	332800	312000	270400	122	18	14
M33×2	365600	342750	297050	122		
M36	392000	367500	318500	100		- 10
M36×3	415200	389250	337350	136	21	16
M39	468800	439500	380900	150	23	18
M39×3	494400	463500	401700			

^а Усилие предварительной затяжки для гаек класса прочности 9 составляет 80 % пробной нагрузки болтов класса прочности 9.8. Пробные нагрузки для болтов — по ISO 898-1.

^b См. приложение В.

^о Верхнее предельное значение усилия зажима составляет 75 % пробной нагрузки (приложение В).

^d Нижнее предельное значение усилия зажима составляет 65 % пробной нагрузки (приложение В).

^е Стопорящие моменты при первом закручивании являются действительными только для цельнометаллических гаек. Для самостопорящихся гаек с неметаллической вставкой максимальный крутящий момент должен составлять 50 % от этого значения.

^f Значения данной таблицы обязательны при проведении приемочных испытаний в лабораторных условиях. Использование этого типа крепежа зависит от способа их применения и эффективность этих деталей может меняться при нормальной эксплуатации. Рекомендуется выполнить дополнительное тестирование всего соединения с использованием производственных компонентов, когда возникают вопросы к качеству изделия.

П р и м е ч а н и е — Оценка результатов испытаний стопорящего момента методами статистического контроля процессов (SPC) не применима.

Таблица 6 — Испытательное усилие предварительной затяжки и стопорящие моменты при испытании самостопорящихся гаек класса прочности 9

Резьба И	Резьба Испытательное усилие предварительной затяжки F ₈₀ ^a , H	Усилие зажима для определения общего коэффициента трения µ _{tot} ^b		Стопорящий момент, Н·м		
d×P		верхнее предельное значение <i>F</i> ₇₅ °, Н	нижнее предель- ное значение <i>F</i> ₆₅ ^d , H	первое закручивание Т _{Fv,max} е	первое откручивание Т _{Fd,min} f	пятое откручивание Т _{Ed,min} f
M3	2616	2453	2126	0,43	0,12	0,08
M4	4568	4283	3712	0,9	0,18	0,12
M5	7384	6923	6000	1,6	0,29	0,2
M6	10480	9825	8515	3	0,45	0,3
M7	15040	14100	12220	4,5	0,65	0,45
M8	19040	17850	15470	6	0,85	0,6
M8×1	20400	19125	16575			
M10	30160	28275	24505			
M10×1,25	31840	29850	25870	10,5	1,5	1
M10×1	33520	31425	27235			
M12	43840	41100	35620		_	
M12×1,5	45840	42975	37245	15,5	2,3	1,6
M12×1,25	47920	44925	38935			
M14	59840	56100	48620	24	3,3	2.3
M14×1,5	64960	60900	52780			2,3
M16	81600	76500	66300	32	4,5	3
M16×1,5	87200	81750	70850			ა

^а Усилие предварительной затяжки для гаек класса прочности 9 составляет 80 % пробной нагрузки болтов класса прочности 9.8. Пробные нагрузки для болтов — по ISO 898-1.

^b См. приложение В.

^с Верхнее предельное значение усилия зажима составляет 75 % пробной нагрузки (приложение В).

^d Нижнее предельное значение усилия зажима составляет 65 % пробной нагрузки (приложение В).

^е Стопорящие моменты при первом закручивании являются действительными только для цельнометаллических гаек. Для самостопорящихся гаек с неметаллической вставкой максимальный крутящий момент должен составлять 50 % от этого значения.

^f Значения данной таблицы обязательны при проведении приемочных испытаний в лабораторных условиях. Использование этого типа крепежа зависит от способа их применения и эффективность этих деталей может меняться при нормальной эксплуатации. Рекомендуется выполнить дополнительное тестирование всего соединения с использованием производственных компонентов, когда возникают вопросы к качеству изделия.

П р и м е ч а н и е — Оценка результатов испытаний стопорящего момента методами статистического контроля процессов (SPC) не применима.

Таблица 7 — Испытательное усилие предварительной затяжки и стопорящие моменты при испытании самостопорящихся гаек класса прочности 10

Резьба	Испытательное усилие	ие		Стопорящий момент, Н·м		
d×P	предварительной затяжки F ₈₀ ^a , H	верхнее предельное значение F ₇₅ °, Н	нижнее предель- ное значение <i>F</i> ₆₅ ^d , Н	первое закручивание Т _{Fv,max} ^е	первое откручивание ${\mathcal T}_{\sf Fd,min}{}^{\sf f}$	пятое откручивание Т _{Fd,min} f
M3	2244		2717			
	3344	3135		0,6	0,15	0,1
M4	5832	5468	4739	1,2	0,22	0,15
M5	9440	8850	7670	2,1	0,35	0,24
M6	13360	12525	10855	4	0,55	0,4
M7	19200	18000	15600	6	0,85	0,6
M8	24320	22800	19760	8	1,15	0,8
M8×1	26000	24375	21125			2,2
M10	38480	36075	31265	14	2	1,4
M10×1,25	40640	38100	33020			
M10×1	42800	40125	34775			
M12	56000	52500	45500		3,1	2,1
M12×1,5	58480	54825	47515	21		
M12v1,25	61120	57300	49660			
M14	76400	71625	62075	31	4,4	3
M14×1,5	83200	78000	67600	31		3
M16	104000	97500	84500	42	6	4.2
M16×1,5	111200	104250	90350	42	6	4,2
M18	127200	119250	103350	56	8	5.5
M18×1,5	143200	134250	116350			5,5
M20	162400	152250	131950	72	10,5	7
M20×1,5	180800	169500	146900	12	10,5	1

Резьба	Испытательное усилие	Усилие зажима для определения общего коэффициента трения µ _{tot} b		Стопорящий момент, Н∙м		
d×P	предварительной затяжки <i>F</i> ₈₀ ^a , H	верхнее предельное значение F ₇₅ °, Н	нижнее предель- ное значение <i>F</i> ₆₅ ^d , H	первое закручивание 7 _{Fv,max} е	первое откручивание Т _{Fd,min} ^f	пятое откручивание Т _{Fd,min} ^f
M22	201600	189000	163800	90		9
M22×1,5	220800	207000	179400		13	
M24	234400	219750	190450	106	15	40.5
M24×2	255200	239250	207350			10,5
M27	304800	285750	247650	123	17	12
M27×2	329600	309000	267800			
M30	372800	349500	302900	140	19	14
M30×2	412000	386250	334750	140		
M33	460800	432000	374400	160	21,5	15,5
M33×2	505600	474000	410800			
M36	542400	508500	440700	180	24	17,5
M36×3	574400	538500	466700			
M39	648000	607500	526500	200	26,5	10.5
M39×3	684000	641250	555750			19,5

^а Усилие предварительной затяжки для гаек класса прочности 10 составляет 80 % пробной нагрузки болтов класса прочности 10.9. Пробные нагрузки для болтов — по ISO 898-1.

b См. приложение В.

с Верхнее предельное значение усилия зажима составляет 75 % пробной нагрузки (приложение В).

^d Нижнее предельное значение усилия зажима составляет 65 % пробной нагрузки (приложение В).

^е Стопорящие моменты при первом закручивании являются действительными только для цельнометаллических гаек. Для самостопорящихся гаек с неметаллической вставкой максимальный крутящий момент должен составлять 50 % от этого значения.

^f Значения данной таблицы обязательны при проведении приемочных испытаний в лабораторных условиях. Использование этого типа крепежа зависит от способа их применения и эффективность этих деталей может меняться при нормальной эксплуатации. Рекомендуется выполнить дополнительное тестирование всего соединения с использованием производственных компонентов, когда возникают вопросы к качеству изделия.

Примечание — Оценка результатов испытаний стопорящего момента методами статистического контроля процессов (SPC) не применима.

Таблица 8— Испытательное усилие предварительной затяжки и стопорящие моменты при испытании самостопорящихся гаек класса прочности 12

Резьба	Испытательное усилие	Усилие зажима для определ общего коэффициента тре		Стопорящий момент, Н∙м		
d×P	предварительной затяжки F ₈₀ ^a , Н	верхнее предельное значение	ное значение	первое закручивание	первое откручивание	пятое откручивание
		<i>F</i> ₇₅ °, H	F ₆₅ ^d , H	T _{Fv,max} e	T _{Ed,min} f	T _{Ed,min} f
M3	3904	3660	3172	0,6	0,15	0,1
M4	6816	6390	5538	1,2	0,22	0,15
M5	11040	10350	8970	2,1	0,35	0,24
M6	15600	14625	12675	4	0,55	0,4
M7	22400	21000	18200	6	0,85	0,6
M8	28400	26625	23075	8	1,15	0,8
M8×1	30400	28500	24700			3,3
M10	45040	42225	36595			
M10×1,25	47520	44550	38610	14	2	1,4
M10×1	50160	47025	40755			
M12	65440	61350	53170			
M12×1,5	68400	64125	55575	21	3,1	2,1
M12×1,25	71440	66975	58045			
M14	89600	84000	72800	31	4,4	3
M14×1,5	96800	90750	78650	31		3
M16	121600	114000	98800	42		4,2
M16×1,5	129600	121500	105300		6	4,2
M18	148800	139500	120900	56	8	5.5
M18×1,5	168000	157500	136500			5,5
M20	190400	178500	154700	72	10,5	7
M20×1,5	211200	198000	171600	72	10,5	<i>/</i>

Резьба	Испытательное усилие	Усилие зажима для определения общего коэффициента трения µ _{tot} b		Стопорящий момент, Н∙м		
d×P	предварительной затяжки <i>F</i> ₈₀ ^a , H	верхнее предельное значение F ₇₅ °, Н	нижнее предель- ное значение <i>F</i> ₆₅ ^d , Н	первое закручивание <i>Т</i> _{Fv,max} е	первое откручивание Т _{Fd,min} f	пятое откручивание Т _{Fd,min} f
 M22	235200	220500	191100	, inex	1 4,11111	1 0,11111
M22×1,5	258400	242250	209950	90	13	9
M24	273600	256500	222300			
M24×2	297600	279000	241800	106	15	10,5
M27	356000	333750	289250			
M27×2	384800	360750	312650	123	17	12
M30	435200	408000	353600		_	
M30×2	481600	451500	391300	140	19	14
M33	538400	504750	374400			
M33×2	590400	553500	479700	160	21,5	15,5
M36	6 33600	594000	514800			
M36×3	671200	629250	545350	180	24	17,5
M39	757600	710250	615550	200	26,5	
M39×3	799200	74925 0	649350			19,5

^а Усилие предварительной затяжки для гаек класса прочности 12 составляет 80 % пробной нагрузки болтов класса прочности 12.9. Пробные нагрузки для болтов — по ISO 898-1.

^b См. приложение В.

с Верхнее предельное значение усилия зажима составляет 75 % пробной нагрузки (приложение В).

^d Нижнее предельное значение усилия зажима составляет 65 % пробной нагрузки (приложение В).

^е Стопорящие моменты при первом закручивании являются действительными только для цельнометаллических гаек. Для самостопорящихся гаек с неметаллической вставкой максимальный крутящий момент должен составлять 50 % от этого значения.

^f Значения данной таблицы обязательны при проведении приемочных испытаний в лабораторных условиях. Использование этого типа крепежа зависит от способа их применения и эффективность этих деталей может меняться при нормальной эксплуатации. Рекомендуется выполнить дополнительное тестирование всего соединения с использованием производственных компонентов, когда возникают вопросы к качеству изделия.

П р и м е ч а н и е — Оценка результатов испытаний стопорящего момента методами статистического контроля процессов (SPC) не применима.

9 Методы испытаний

9.1 Общие положения

Гайки должны быть испытаны в состоянии поставки.

9.2 Испытание пробной нагрузкой

Испытания пробной нагрузкой должны быть выполнены в соответствии с ISO 898-2 со следующими дополнениями.

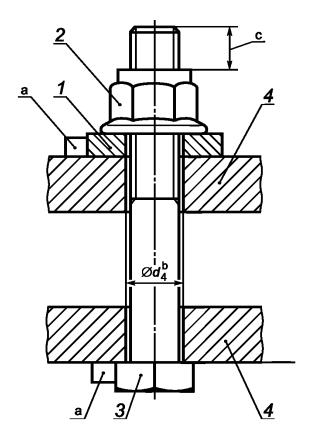
Гайка для испытаний должна быть собрана с испытательным болтом или с закаленной стальной оправкой. При закручивании гайки на угол поворота 360°, после выступания наружу одного полного витка резьбы, должен быть зафиксирован максимальный стопорящий момент. При арбитражных испытаниях для самостопорящихся гаек с неметаллической вставкой должна быть использована закаленная стальная оправка, а для самостопорящихся цельнометаллических гаек — испытательный болт. Максимальный стопорящий момент при закручивании гайки на испытательный болт или оправку должен быть зафиксирован после выступания наружу одного полного шага резьбы из стопорящего элемента.

Нагрузка, соответствующая пробной нагрузке для гайки по ISO 898-2, должна быть приложена через испытательный болт или оправку в осевом направлении на опорную поверхность и выдержана в течение 15 с. Гайка должна выдерживать эту нагрузку без срыва резьбы и повреждений. Испытания пробной нагрузкой являются решающими.

Максимальный стопорящий момент после откручивания гайки на половину полного оборота до полного откручивания должен быть измерен во время движения гайки и не должен превышать максимальный стопорящий момент, зафиксированный при закручивании.

9.3 Испытание стопорящего момента

9.3.1 Общие положения


Целью данного метода испытаний самостопорящихся гаек является одновременное определение:

- а) эксплуатационных свойств (создающих стопорящий момент для гаек);
- b) свойств крутящего момента и усилия предварительной затяжки самостопорящихся гаек, испытанных по ISO 16047, если это согласовано между изготовителем и покупателем.

9.3.2 Измерительное устройство для испытаний

Измерительное устройство для испытаний — по ISO 16047.

Приспособление для испытаний изображено на рисунке 1. Измерительное устройство для испытаний не должно создавать усилие предварительной затяжки во время испытаний стопорящего момента.

^а Испытательная опорная пластина/шайба и головка болта должны быть закреплены соответствующим способом для предотвращения прокручивания и установлены соосно.

Рисунок 1 — Приспособление для испытаний и гайка после посадки

9.3.3 Испытательные детали

Испытательные болты/винты и испытательная пластина/шайба — по ISO 16047. Поверхность испытательного болта и испытательной шайбы должна быть обработана в соответствии с ISO 16047. Поверхность должна быть гладкая, без покрытия и обезжирена, если нет иного соглашения.

Испытательная шайба должна быть типа НН, если нет иного соглашения. За исключением испытательной оправки, испытательные детали следует использовать только один раз.

Класс прочности испытательного болта/винта выбирают в соответствии с таблицей 9.

Таблица 9 — Классы прочности для испытательного болта/винта

	Класс прочности				
проверяемой гайки	соответствующего испытательного болта/винта				
04	≥ 8.8				
5	≥ 8.8				
05	≥10.9				
6	≥ 8.8				
8	≥ 8.8				
9	≥ 9.8				
10	≥10.9				
12	≥12.9				

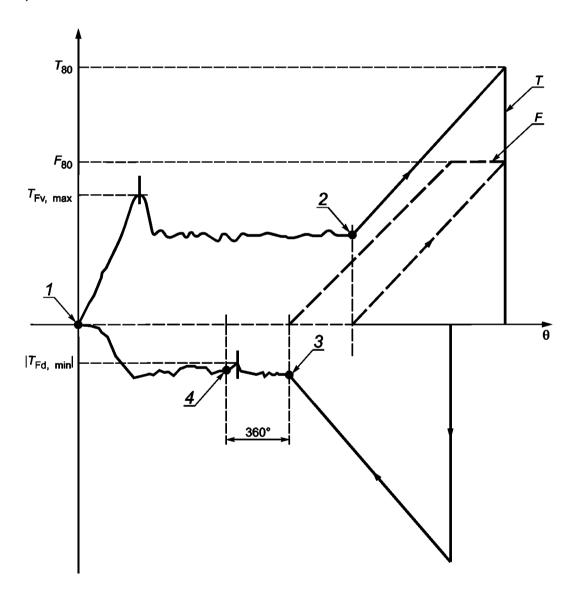
 $^{^{\}rm b}~d_{\scriptscriptstyle A}$ должен соответствовать ISO 273:1979, точный ряд.

с От 4 до 7 шагов резьбы.

^{1 —} испытательная опорная пластина/шайба; 2 — испытуемая гайка; 3 — испытательный болт/винт; 4 — тензодатчик; d_4 — диаметр отверстия в приспособлении

9.3.4 Методика испытаний

Это испытание может быть проведено автоматически с соответствующим испытательным приспособлением или вручную с соответствующими ручными инструментами, такими как динамометрический ключ и динамометрические датчики (см. 9.3.2).


В спорных ситуациях применяют автоматический метод.

Условия испытания на крутящий момент и усилие предварительной затяжки определены в ISO 16047.

Испытательный болт/винт располагают в испытательном приспособлении таким образом, чтобы после закручивания гайки до посадки он выступал из стопорящего элемента, как показано на рисунке 1.

Проверяемую гайку закручивают от руки на резьбу болта/винта до зацепления со стопорящим элементом. Конец испытательного болта/винта не должен выступать из гайки до испытаний. Длина резьбы для затяжки должна составлять 4—7 шагов в соответствии с рисунком 1.

Исходная точка фазы закручивания соответствует старту приспособления для затяжки (см. точку *1* на рисунке 2).

F — усилие предварительной затяжки; T — крутящий момент; θ — угол поворота; 1 — точка, в которой впервые возникает стопорящий момент при закручивании и начинается измерение $T_{\rm Fv}$; 2 — точка посадки — окончание измерений $T_{\rm Fv}$; 3 — отсутствие контакта с испытательной пластиной/шайбой, начало измерения $T_{\rm Fd}$; 4 — окончание измерения $T_{\rm Fd}$

Рисунок 2 — Кривая изменения крутящего момента и усилия зажима от угла поворота

Вращение от точки 1 должно происходить непрерывно и равномерно до достижения испытательного усилия предварительной затяжки F_{80} .

Значения F_{80} указаны в таблицах 1—8. Крутящий момент при усилии предварительной затяжки F_{75} должен быть записан и использован.

П р и м е ч а н и е — При достижении значения F_{80} подается сигнал на отключение испытательного приспособления, чтобы гарантировать точный подсчет при F_{75} .

Должна быть определена точка посадки (см. точку 2 на рисунке 2). Между точками 1 и 2 должен быть измерен стопорящий момент при закручивании $T_{\text{Fv.max}}$ (см. таблицы 1—8).

Затем гайка откручивается за счет приложения обратного крутящего момента до уменьшения усилия предварительной затяжки в испытательном болте/винте до нуля (см. точку 3 на рисунке 2). При последующем откручивании на угол поворота 360° (см. точку 4 на рисунке 2) должен быть измерен стопорящий момент при откручивания $T_{\text{Fd,min}}$ (таблицы 1—8). Точка 4 соответствует угловому положению точки 3 минус 360° .

Затем гайку откручивают до тех пор, пока ее начальное угловое положение не достигнет исходной точки (см. точку 1).

Во время откручивания гайки вращение должно быть непрерывным и равномерным от испытательного усилия предварительной затяжки F_{80} до точки 1.

После полного удаления гайки резьба гайки и болта не должна быть повреждена. В спорных случаях испытательный болт должен свинчиваться с соответствующим проходным калибром-кольцом.

Для определения значений при пятом откручивании вышеуказанный процесс должен быть проведен еще четыре раза только между точками 1 и 2.

Во время пятого откручивания должен быть измерен стопорящий момент при откручивании, когда гайка совершает первый оборот на угол поворота 360°. Этот крутящий момент должен быть не менее значения стопорящего момента пятого откручивания, установленного в таблицах 1—8.

9.3.5 Отчет по результатам испытаний

Краткое представление о содержании отчета по результатам испытаний указано в ISO 16047. Ссылка на этот стандарт должна быть включена в отчет по результатам испытаний.

Стопорящий момент при закручивании T_{Fv} и стопорящий момент при откручивании T_{Fd} (и, если требуется, результат испытания температурной стойкости самостопорящихся гаек с неметаллической вставкой) должны быть включены в отчет по результатам испытаний.

Приложение А (обязательное)

Температурная стойкость самостопорящихся гаек с неметаллической вставкой

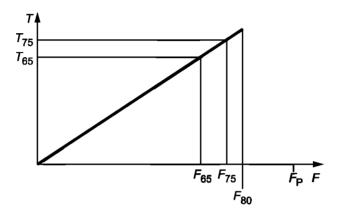
Технические условия, содержащиеся в данном приложении, при необходимости могут быть согласованы между потребителем и поставщиком.

Гайка при температуре окружающей среды от 10 °C до 35 °C должна быть закручена на испытательный болт так, чтобы над гайкой выступало от четырех до семи полных шагов резьбы болта, но не возникало усилия предварительной затяжки.

Комплект должен быть помещен в камеру температурой плюс 120 °С; через 1 ч комплект достают из камеры для естественного охлаждения до температуры окружающей среды.

Затем комплект должен быть помещен в камеру температурой минус 50 °C; через 1 ч комплект достают из камеры для естественного восстановления на воздухе до температуры окружающей среды.

С комплектом, приведенным к температуре окружающей среды, должны быть проведены испытания стопорящего момента в соответствии с методикой испытания, приведенной в 9.3.4, не учитывая стопорящий момент при закручивании и усилие предварительной затяжки. Стопорящий момент, измеренный при первом и пятом откручиваниях, не должен быть меньше соответствующих значений, установленных в таблицах 1—8.


По соглашению между потребителем и поставщиком диапазон температур может быть изменен для учета особых эксплуатационных требований.

Приложение В (справочное)

Основные положения для оценки общего коэффициента трения μ_{tot}

Процесс затяжки продолжают до тех пор, пока испытательное усилие зажима не составит 80 % пробной нагрузки сопряженного болта. Для оценки коэффициента трения μ_{tot} определяют усилие зажима при 65 % и 75 % пробной нагрузки.

Коэффициент трения μ_{tot} рассчитывают как среднее от верхнего и нижнего предельных значений коэффициента трения.

 $F_{\rm p}$ — пробная нагрузка; $F_{\rm 65}$ — нижнее предельное значение нагрузки для определения общего коэффициента трения, составляющее 65 % от $F_{\rm p}$; $F_{\rm 75}$ — верхнее предельное значение нагрузки для определения общего коэффициента трения, составляющее 75 % от $F_{\rm p}$; $F_{\rm 80}$ — испытательное усилие зажима (усилие, при котором заканчивают процесс затяжки), составляющее 80 % от $F_{\rm p}$; $T_{\rm 65}$ — нижнее предельное значение крутящего момента для определения общего коэффициента трения при $F_{\rm 65}$; $T_{\rm 100}$ — верхнее предельное значение крутящего момента для определения общего коэффициента трения при $F_{\rm 65}$; T_{75}° — верхнее предельное значение крутящего момента для определения общего коэффициента трения при F_{75}°

Рисунок В.1 — Основные положения для оценки коэффициента трения μ_{tot}

Приложение ДА (справочное)

Сведения о соответствии ссылочных международных стандартов ссылочным межгосударственным стандартам

Таблица ДА.1 — Сведения о соответствии ссылочных международных стандартов ссылочным межгосударственным стандартам

Обозначение ссылочного международного стандарта	Степень соответствия	Обозначение и наименование соответствующего межгосударственного стандарта
ISO 273:1979	NEQ	ГОСТ 11284—75 Отверстия сквозные под крепежные детали. Размеры
ISO 898-1	IDT	ГОСТ ISO 898-1—2014 Механические свойства крепежных изделий из углеродистых и легированных сталей. Часть 1. Болты, винты и шпильки установленных классов прочности с крупным и мелким шагом резьбы
ISO 898-2	IDT	ГОСТ ISO 898-2—2015 Механические свойства крепежных изделий из углеродистых и легированных сталей. Часть 2. Гайки установленных классов прочности с крупным и мелким шагом резьбы
ISO 898-6	IDT	ГОСТ ISO 898-2—2015 Механические свойства крепежных изделий из углеродистых и легированных сталей. Часть 2. Гайки установленных классов прочности с крупным и мелким шагом резьбы
ISO 965-2	_	*
ISO 16047	IDT	ГОСТ ISO 16047—2015 Изделия крепежные. Испытания крутящего момента и усилия предварительной затяжки

^{*} Соответствующий межгосударственный стандарт отсутствует. До его утверждения рекомендуется использовать перевод на русский язык данного международного стандарта. Перевод данного международного стандарта находится в Федеральном информационном фонде технических регламентов и стандартов.

П р и м е ч а н и е — В настоящей таблице использованы следующие условные обозначения степени соответствия стандартов:

- IDT идентичные стандарты;
- NEQ неэквивалентные стандарты.

Библиография

- [1] ISO 68-1 ISO general purpose screw Threads Basic profile Part 1: Metric screw threads
- [2] ISO 261 ISO general purpose metric screw threads General plan
- [3] ISO 262 ISO general purpose metric screw threads Selected sizes gor screws, bolts and nuts

УДК 621.882.3:006.354 MKC 21.060.20 ГЗЗ ОКП 16 8000

Ключевые слова: гайки самостопорящиеся, технические требования, обозначения, момент затяжки, усилие предварительной затяжки, коэффициент трения

Редактор *М.А. Гетманова*Технический редактор *В.Н. Прусакова*Корректор *Е.Д. Дульнева*Компьютерная верстка *К.Л. Чубанова*

Сдано в набор 30.05.2016. Подписано в печать 23.06.2016. Формат $60 \times 84^{1}/_{8}$. Гарнитура Ариал. Усл. печ. л. 3,72 Уч.-изд. л. 3,34. Тираж 45 экз. Зак. 1534.

Подготовлено на основе электронной версии, предоставленной разработчиком стандарта