Государственное санитарно-эпидемиологическое нормирование Российской Федерации

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАТОРЫ

ОПРЕДЕЛЕНИЕ ОСТАТОЧНЫХ КОЛИЧЕСТВ ПЕСТИЦИДОВ В ПИЩЕВЫХ ПРОДУКТАХ, СЕЛЬСКОХОЗЯЙСТВЕННОМ СЫРЬЕ И ОБЪЕКТАХ ОКРУЖАЮЩЕЙ СРЕДЫ

Сборник методических указаний

МУК 4.1.2138-4.1.2151-06

Издание официальное

ББК 51.21 О37

- О37 Определение остаточных количеств пестицидов в пищевых продуктах, сельскохозяйственном сырье и объектах окружающей среды: Сборник методических указаний.—М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2009.—146с.
 - 1. Сборник подготовлен Федеральным научным центром гигиены им. Ф. Ф. Эрисмана (академик РАМН, проф. В. Н. Ракитский, проф. Т. В. Юдина); при участии специалистов Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека. Разработчики методов указаны в каждом из них.
 - 2. Рекомендованы к утверждению Комиссией по государственному санитарно-эпидемическому нормированию при Федеральной службе по надзору в сфере защиты прав потребителей и благополучия человека.
 - 3. Утверждены Главным государственным санитарным врачом Российской Федерации, Первым заместителем Министра здравоохранения Российской Федерации, академиком РАМН Г. Г. Онищенко.
 - 4. Введены впервые.

ББК 51.21

Формат 60х88/16 Печ. л. 9,25

Тираж 100 экз.

Тиражировано отделом издательского обеспечения Федерального центра гигиены и эпидемиологии Роспотребнадзора 117105, Москва, Варшавское ш., 19а Отделение реализации, тел./факс 952-50-89

Содержание

1. Методические указания по измерению концентраций 2,4-Д в атмосферном
воздухе населенных мест методом капиллярной газожидкостной хроматографии.
MYK 4.1.2138-064
2. Методические указания индоксакарба в воздухе рабочей зоны методом
капиллярной газожидкостной хроматографии МУК 4.1.2139-0614
3. Методические указания по определению остаточных количеств бромадиолона в
воде методом высокоэффективной жидкостной хроматографии. МУК 4.1.2140-0623
4. Методические указания по измерению концентраций манкоцеба в атмосферном
воздухе населенных мест методом газожидкостной хроматографии. МУК 4.1.2141-0634
5. Методические указания по измерению концентраций металаксила в воздухе рабочей
зоны, смывах с кожных покровов операторов и атмосферном воздухе населенных мест
методом капиллярной газожидкостной хроматографии. МУК 4.1.2142-0645
6. Методические указания по измерению концентраций МЦПА в атмосферном
воздухе населенных мест методом капиллярной газожидкостной хроматографии. МУК
4.1.2143-0656
7. Газохроматогрофическое определение 1-метоксипропан-2-ол ацетата в атмосферном
воздухе. МУК 4.1. 2144-06
8. Фотометрическое определение натрия перкарбоната в атмосферном воздухе.
MYK 4.1. 2145-06
9. Методические указания по газохроматографическому определению концентраций
1,1 диметилгидразина в почве. МУК 4.1. 2146-06
10. Методические указания по измерению концентраций хлорсульфурона
в атмосферном воздухе паселенных мест методом газожидкостной хроматографии.
MYK 4.1, 2147-0694
11. Методические указания по измерению концептраций проквиназида
в воздухе рабочей зоны методом кашиллярной газожидкостной хроматографии.
МУК 4.1. 2148-06
12. Методические указания по определению остаточных количеств пропаргита в воде методом газожидкостной хроматографии. МУК 4.1. 2149-06
13. Методические указания по измерению концентраций цимоксанила в воздухе
рабочей зоны, смывах с кожных покровов операторов и в атмосферном воздухе
населенных мест методом капиллярной газожидкостной хроматографии.
мук 4.1. 2150-06
14. Методические указания по измерению концентраций метомила в воздухе рабочей
зоны методом высокоэффективной жидкостной хроматографии. МУК 4.1.2151-06138
Some metodom absolutory describation with control before the papers. 1417 12 4.1.2131-00130

УТВЕРЖДАЮ

Руководитель Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека Главный государственный санитарный

вран Рессийской Фелерации

Г.Г.Онишенко

2006r

Дата введония: с 1 мод да 2007г.

4.1. МЕТОЛЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Фотометрическое определение натрия перкарбоната в атмосферном воздухе

Методические указания MVK 4.1.2145-06

1. Область применения

Настоящие методические указания устанавливают методику выполнения измерений натрия перкарбоната в атмосферном воздухе фотомстрическим методом в диапазоне концентрации 0.035 - 0.35 мг/м3.

Методические указания предназначены для использования лабораториями Роспотребнадзора при осуществлении аналитического контроля **учреждений** загрязнения атмосферного расположения химического воздуха районе применения перкарбоната. производства И натрия производственными пабораториями предприятий. научно-исследовательскими институтами. работающими в области гигиены окружающей среды.

Методические указания разработаны в соответствии с требованиями ГОСТ 1' 8.563-96 «Методика выполнения измерений», ГОСТ 17.0.0.02-79 «Охрана природы. Метрологическое обеспечение контроля загрязненности атмосферы, поверхностных бод и почвы. Основные положения». ГОСТ 17.2.4.02-81 «Охрана природды. Атмосфера. Общие требования к методам определения загрязняющих пентеств».

Методические указания одобрены и рекомендованы к практическому применению секцией по физико-химическим методам исследования объектов окружающей среды Проблемной комиссии «Научные основы экологии человека и гигиены окружающей среды» и Комиссией по государственному санитарнонидемиологическому нормированию Министерства здравоохранения гоциального развития Российской Федерации.

2. Физико-химические и токсикологически свойства

Натрия перкарбонат Na₂CO₃ · 1,5 H₂O₂, молекулярная масса 157,01 15630-89-4. Представляет собой бесцветные регистрационный номер CAS малогигроскопичные кристаплы. Растворимость в воде 147,0 г/л при 20% Насыщенный водный раствор (рН 10,8) пеустойчив и при хранении в течение сущь почти полностью теряет активный кислород. По химическим свойствам подобил другим гидропероксисольватам. При нагреве до 140°C происходит быстрый распад с карбоната натрия, воды и кислорода. В отсутствии влаги при образованием комнатной температуре может храниться в течение нескольких месяцев без потерн кислорода. Влага способствует распаду натрия Соединения железа, марганца и меди ускоряют его распад, а трилон Б и силикаты замедляют. Получают кристаллизацией из водного раствора карбоната натрия и перекиси водорода. Применяют в качестве отбеливающего средства в химической и текстильной промышленности, а также как дезинфицирующее и бактерицидное средство.

Натрий перкарбонат обладает общетоксическим действием, оказывает раздражающее действие на кожу, слизистые оболочки глаз, верхних и глубоких дыхательных путей, может вызвать отек легких.

Предельная допустимая концентрация натрий перкарбоната: максимальная разовая - 0,07мг/м³, среднесуточная - 0,03мг/м³. Агрегатное состояние в воздухе аэрозоль.

3. Погрешность измерений

Методика обеспечивает выполнение измерений с погрешностью не превышающей $\pm 25\%$ при доверительной вероятности 0,95.

4. Метод измерений

Измерение концентраций натрия перкарбоната основано на улавливании его из воздуха и концентрировании на фильтре АФА-ХП-20, последующей десорбции дистиллированной водой, окислении соли Мора до трехвалентного железа, взаимодействии последнего с роданидом аммония и фотометрическом измерении окрашенного в красно-оранжевый цвет продукта реакции при длине волны 460 нм.

Нижний предел измерения содержания натрия перкарбоната в анализируемом объеме раствора пробы — 10 мкг.

Определению не мешают серная кислота, соляная кислота, сульфат натрия, треххлористый фосфор, сернокислый магний, бензоилхлорид, мешают ионы \mathbf{F}^- и соли трехвалентного железа.

5. Средства измерений, вспомогательные устройства, материалы и реактивы

При выполнении измерений применяют следующие средства измерений, вспомогательные устройства, материалы и реактивы.

48

5.1. Средства измерений

Фотоэлектроколориметр КФК-3 или любой другой	
с аналогичными техническими характеристиками	ТУ 3-3.2164 - 89
Весы лабораторные ВЛА-200	ГОСТ 24104-2001
Меры массы	ГОСТ 7328 - 2001
Колбы мерные вместимостью 25 и 100 см ³	ΓΟCT 1770 - 74E
Пипетки вместимостью 1, 5 и 10 см ³	ГОСТ 29196 - 91
Пробирки колориметрические с притертыми	
пробками вместимостью 10 см ³	ΓΟCT 25336 – 82E
Бюксы вместимостью 25 см ³	ΓΟCT 25336 - 82
Кюветы стеклянные с толщиной слоя 10 мм	
Термометр ТЛ-31-А	ГОСТ 28498-90.
Барометр-анероид М-67	ТУ 2504-1797-75.
Установка пневматическая УП-12П	ТУ У 2149242.005-97

5.2. Вспомогательные устройства

Фильтродержатель, снабженный металлической сеткой	ТУ 95-72-05-77
Дистиллятор	ТУ 61-1-721-79
Эксикатор	

5. 3. Материалы

Фильтры АФА-ХП-20	ТУ 95-743-80
Фильтры беззольные «синяя лента»	ТУ 6-09-1676-77

5.4. Реактивы

Натрия перкарбонат с содержанием основного	
вещества не менее 79,55%	ТУ 2144001-24345844-2002
Вода дистиплированная	ΓΟCT 6709-72
Этиловый спирт, ректификат 96%	FOCT 8314-77
Роданид аммония, ч.д.а.	ГОСТ 19522-74
Серная кислота, ч	ΓΟCT 4204-77
Аммоний-железо (П) сернокислый (соль Мора), ч	TOCT 4208-72
Кальший хлорид, ч	ТУ 6-09-4711-81

Примечание - Допускается применение других средств измерений, вспомогательных устройств, реактивов и материалов с техническими и метрологическими характеристиками, аналогичными приведенным.

6. Требования безопасности

- 6.1. При работе с реактивами соблюдают требования безопасности, установленные для работы с токсичными, едкими и легковоспламеняющимися веществами по ГОСТ 12.1.005-88.
- 6.2. При выполнении измерений концентраций натрия перкарбоната с использованием фотоэлектроколориметра КФК-3 и установки пневматической УП-

12П следует соблюдать правила электробезопасности в соответствии с ГОСТ 12.1.019-79 и инструкциями по эксплуатации приборов.

7. Требования к квалификации оператора

К выполнению измерений и обработке их результатов допускают лиц с высшим или средним специальным образованием, прошедших обучение работе на фотоэлектроколориметре и установке пневматической.

8. Условия измерений

- 8.1. Приготовление растворов и подготовку проб к анализу проводят при температуре воздуха (20±5) ⁰C, атмосферном давлении 630-800 мм рт.ст. и относительной влажности воздуха не более 80%.
- 8.2. Выполнение измерений на фотоэлектроколориметре проводят в условиях, рекомендованных технической документацией к прибору и настоящими методическими указаниями.

9. Подготовка к выполнению измерений и проведение измерений

Перед выполнением измерений проводят следующие работы: приготовление растворов, подготовку фотоэлектроколориметра к работе, установление градуировочной характеристики, отбор проб.

9.1. Приготовление растворов

Исходный раствор натрия перкарбоната (c=1,0 мг/см³)

31,4мг натрия перкарбоната (25,0мг содержания основного вещества) вносят в мерную колбу емкостью 25 см³, приливают дистиллированную воду до метки и тщательно перемешивают. Раствор применяют свежеприготовленным.

Рабочий раствор натрий перкарбоната (c=100,0 мкг/см³)

2,5 см³ исходного раствора натрия перкарбоната вносят в мерную колбу емкостью 25 см³. доводят дистиплированной водой до метки и тщательно перемещивают. Раствор применяют свежеприготовленным.

6 н. раствор серной кислоты

16,1 см³ (29,4г) концентрированной серной кислоты осторожно вносят в мерную колбу емкостью 100 см³, с предварительно внесеной дистиллированной водой объемом 50 см³. Колбу заполняют дистиллированной водой до метки после охлаждения раствора до комнатной температуры.

Реакционный раствор соли Мора и роданида аммония

В мерную колбу с притертой пробкой емкостью 100 см³ приливают 10,0 см³ 6 н. раствора серной кислоты, растворяют в ней при перемешивании 0,5г роданида аммония и 0,5г соли Мора и приливают 50,0 см³ этилового спирта. Закрывают колбу, дают отстояться и фильтруют. Раствор применяют свежеприготовленным.

9.2. Подготовка прибора

Подготовку фотоэлектроколориметра проводят в соответствии с руководством по его эксплуатации.

9.3. Установление градуировочной характеристики

Градуировочную характеристику, выражающую зависимость оптической плотности раствора от содержания натрия перкарбоната (мкг) устанавливают на градуировочных растворах по 5-ти сериям растворов для градуировки.

Таблица

Растворы для установления градуировочной характеристики при определении концентрации натрия перкарбоната

№ раствора	Рабочий раствор натрия перкарбоната, см ³	Содержание натрия перкарбоната на фильтре, мкг
1	0	0
2	0,1	10
3	0,2	20
4	0,5	50
5	1,0	100
6	1,5	150

Для этого фильтр помещают в бюкс, смачивают его поверхность по каплям итиловым спиртом и вносят по каплям из пипетки рабочий раствор натрия перкарбоната в соответствии с таблицей, периодически подсушивая фильтр на воздухе. Затем фильтр экстрагируют 7 см³ дистиллированной воды, помещивая при этом стеклянной палочкой в течение 5-7 минут. Экстракцию повторяют 3см³ дистиллированной воды. 5 см³ объединенного экстракта помещают в колориметрическую пробирку с притертой пробкой, добавляют 1,0 см³ реакционного раствора, закрывают пробкой и перемешивают. Через 10 минут измеряют оптическую плотность растворов в кюветах с толщиной оптического слоя 10 мм на длине волны 460 нм по отношению к раствору сравнения, не содержащему определяемого вещества (раствор №1 по таблице).

По полученным данным строят градуировочную характеристику, нанося на ось ординат значения оптических плотностей градуировочных растворов, а на ось абсцисс – соответствующие значения содержания натрия перкарбоната (мкг).

Проверку градуировочной характеристики проводят 1 раз в три месяца или в случае использования новой партии реактивов, а также изменений условий анализа.

9.4. Отбор проб воздуха

Отбор проб воздуха, содержащего натрия перкарбонат, проводят согласно ГОСТ 17.2.3.01-86. Воздух с объемным расходом 20 дм³/мин аспирируют через фильтр АФА-ХП-20, помещенный в фильтродержатель, снабженный металлической сеткой, в течение 20 мин. Отобранные пробы помещают в пробирки с притертыми пробками.

Для определения среднесуточной концентрации натрия перкарбоната воздух аспирируют в течение суток через один и тот же фильтр 6-12 раз с перерывами (2-4 часа) с тем же объемным расходом в течение (20-30) минут. Отобранные пробы хранят в эксикаторе над прокаленным хлористым кальцием.

Срок хранения не более недели.

10. Выполнение измерений

Фильтр с отобранной пробой помещают в бюкс, смачивают по каплям этиловым спиртом и экстрагируют 7. см³ дистиллированной воды, помещивая при этом стеклянной палочкой в течение 5-7 минут, затем фильтр тщательно отжимают. Фильтр экстрагируют повторно 3 см³ дистиллированной воды. Степень десорбции натрия перкарбоната с фильтра 98%. Раствор при необходимости фильтруют через бумажный фильтр «синяя лента». Для анализа отбирают 5 см³ полученного раствора, добавляют 1 см³ реакционного раствора, закрывают пробкой. Через 10 минут измеряют оптическую плотность раствора по отношению к раствору сравнения, который готовят одновременно и аналогично пробе, используя чистый фильтр. Значение оптической плотности вычисляют из двух параллельных определений.

Расчет содержания натрия перкарбоната проводят по градуировочной характеристике.

11. Вычисление результатов измерений

Концентрацию натрия перкарбоната в воздухе C, $(мг/м^3)$ вычисляют m формуле (1)

$$C = \frac{a \cdot B}{b \cdot V_o}, \tag{1}$$

где а – содержание натрия перкарбоната в анализируемом объеме раствори пробы, найденное по градуировочной характеристике, мкг;

В – общий объем раствора, см3;

б – объем раствора, взятый для анализа, см³;

 V_0 — объем воздуха, отобранный для анализа и приведенный к нормальным условиям, дм³, рассчитывают по формуле (2):

$$V_0 = \frac{V_1 \cdot 273 \cdot P}{(273 + t) \cdot 760} \tag{2},$$

где V₁- объем воздуха, отобранный для анализа, дм³;

Р- атмосферное давление, мм рт.ст;

t- температура воздуха в месте отбора пробы, ^оС.

За результат измерений принимают среднее арифметическое результатов двух параллельных определений, если выполняется условие приемлемости (3)

$$\frac{2 \cdot |C_1 - C_2| \cdot 100}{(C_1 + C_2)} \le r \tag{3},$$

где C_1 , C_2 - результаты параллельных определений массовой концентрации перкарбоната натрия, мг/м 3 ;

r - значение предела повторяемости, равное 17%.

Если условие (3) не выполняется, получают еще по два результата в полном соответствии с даннми методическими указаниями. За результат измерений

принимают среднее арифметическое значение результатов четырех определений, если выполняется условие (4)

$$\frac{4 \cdot |C_{\text{max}} - C_{\text{min}}| \cdot 100}{(C_1 + C_2 + C_3 + C_4)} \le CR_{0,95} \tag{4},$$

где C_{max} , C_{min} - максимальное и минимальное значения из полученных четырех результатов параллельных определений массовой концентрации перкарбоната натрия, мг/м 3 ;

 $CR_{0.95}$ — значение критического диапазона для уровня вероятности P=0,95 и n — результатов определений:

$$CR_{0.95} = f(n) \cdot \sigma_r$$
.

Для n=4:

$$CR_{0,95} = 3,6 \cdot \sigma_r$$
 (5), где $\sigma_r = 6\%$.

Если условие (4) не выполняется, выясняют причины превышения критического диапазона, устраняют их и повторяют выполнение измерений в соответствии с требованиями методических указаний.

12. Оформление результатов измерений

Результаты измерений концентраций натрия перкарбоната оформляют протоколом в виде:

$$\overline{C} \pm 0.01 \cdot \delta \cdot \overline{C}$$
 при Р=0,95,

где \overline{C} _ среднее арифметическое значение результатов **n** определений, признанных приемлемыми (по п.11), мг/м³;

 δ - относительная погрешность, %,.

В протоколе указывается дата проведения анализа, место отбора пробы, название лаборатории, юридический адрес организации, ответственный исполнитель и руководитель лаборатории.

В случае, если перкарбоната натрия в атмосферном воздухе ниже нижней (выше верхней) границы диапазона измерений, то производят следующую запись в журнале: «массовая концентрация перкарбоната натрия в атмосферном воздухе менее 0,035 мг/м³ (более 0,35 мг/м³)».

13. Контроль погрешности измерений

Контроль погрешности измерений содержания натрия перкарбоната проводят на градуировочных растворах в соответствии с пп. 10 и 11. Рассчитывают среднее значение результатов измерений натрия перкарбоната в градуировочных растворах:

$$\overset{-}{C}_{ni} = \overset{n}{----} \bullet (\Sigma C_{ni})$$
 , где $\overset{i=1}{n}$

п - число измерений в градуировочной смеси,

 $C_{\rm ni}$ - результат измерений содержания вещества в і-ой пробе градуировочного раствора, мг/м³.

Рассчитывают среднее квадратичное отклонение измерений концентраций:

$$S = \frac{\left[\sum_{i=1}^{n} (C_{ni} - \overline{C_{ni}})^{2}\right]^{0.5}}{(n-1)^{0.5}}$$

Рассчитывают доверительный интервал:

$$\Delta \overline{C_{ni}} = \frac{S}{(n)^{0.5}} \cdot t$$
, где

t - коэффициент нормированных отклонений, определяемый по таблицам
 Стьюдента, при доверительной вероятности 0,95.
 Затем рассчитывают относительную погрешность определения концентраций:

$$\delta = \frac{\Delta \overline{C}_{ni}}{\overline{C}_{ni}} \cdot 100\%$$

Если б≤25%, то погрешность измерения удовлетворительная. Если данное условие не выполняется, то выясняют причину и повторяют измерения.