Государственное санитарно-эпидемиологическое нормирование Российской Федерации

2.6.1. ГИГИЕНА. РАДИАЦИОННАЯ ГИГИЕНА. ИОНИЗИРУЮЩЕЕ ИЗЛУЧЕНИЕ, РАДИАЦИОННАЯ БЕЗОПАСНОСТЬ

Радиационный контроль рентгеновских установок для досмотра багажа и товаров

Методические указания МУ 2.6.1.3386—16

Издание официальное

Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека

2.6.1. ГИГИЕНА. РАДИАЦИОННАЯ ГИГИЕНА. ИОНИЗИРУЮЩЕЕ ИЗЛУЧЕНИЕ, РАДИАЦИОННАЯ БЕЗОПАСНОСТЬ

Радиационный контроль рентгеновских установок для досмотра багажа и товаров

Методические указания МУ 2.6.1.3386—16 ББК 51.24 Р15

Р15 Радиационный контроль рентгеновских установок для досмотра багажа и товаров: Методические указания.—М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2016.—11 с.

ISBN 978-5-7508-1530-2

- 1. Разработаны Федеральным бюджетным учреждением науки «Санкт-Петербургский научно-исследовательский институт радиационной гигиены имени профессора П. В. Рамзаева» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (А. И. Барковский, Б. Ф. Воробьев, К. А. Сапрыкин, Н. В. Титов); Федеральной службой по надзору в сфере защиты прав потребителей и благополучия человека (В. С. Степанов).
- 2. Рекомендованы к утверждению Комиссией по государственному санитарно-эпидемиологическому нормированию Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (протокол от 20 мая 2016 г. № 1).
- 3. Утверждены руководителем Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главным государственным санитарным врачом Российской Федерации А. Ю. Поповой 26 июля 2016 г.
 - 4. Введены впервые.

ББК 51.24

ISBN 978-5-7508-1530-2

© Роспотребнадзор, 2016

© Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2016

Содержание

1.	Область применения	.4
	Общие положения	
3.	Проведение радиационного контроля РУДБТ	6
	3.1. Измерение мощности дозы рентгеновского излучения на рабочих местах операторов РУДБТ 1-го типа	6
	3.2. Измерение мощности амбиентного эквивалента дозы рентгеновского излучения на внешней поверхности РУДБТ 1-го типа	7
	3.3. Измерение мощности амбиентного эквивалента дозы рентгеновского излучения на рабочем месте оператора РУДБТ 2-го типа	9
	3.4. Измерение мощности амбиентного эквивалента дозы рентгеновского излучения на внешней поверхности РУДБТ 2-го типа	10
	3.5. Оценка соответствия полученных результатов измерений допустимым значениям	11

УТВЕРЖЛАЮ

Руководитель Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главный государственный санитарный врач Российской Федерации

А. Ю. Попова

26 июля 2016 г.

2.6.1. ГИГИЕНА. РАДИАЦИОННАЯ ГИГИЕНА. ИОНИЗИРУЮЩЕЕ ИЗЛУЧЕНИЕ, РАДИАЦИОННАЯ БЕЗОПАСНОСТЬ

Радиационный контроль рентгеновских установок для досмотра багажа и товаров

Методические указания МУ 2.6.1.3386—16

1. Область применения

- 1.1. Настоящие методические указания «Радиационный контроль рентгеновских установок для досмотра багажа и товаров» (далее МУ) разработаны с учетом требований «Норм радиационной безопасности (НРБ-99/2009)» СанПиН 2.6.1.2523—09, «Основных санитарных правил обеспечения радиационной безопасности (ОСПОРБ-99/2010)» СП 2.6.1.2612—10 и санитарных правил «Гигиенические требования по обеспечению радиационной безопасности при обращении с лучевыми досмотровыми установками» СанПиН 2.6.1.2369—08.
- 1.2. МУ определяют порядок проведения радиационного контроля рентгеновских установок для досмотра багажа и товаров (далее РУДБТ) 1-го и 2-го типов.
- 1.3. МУ предназначены для организаций, эксплуатирующих РУДБТ, проводящих радиационный контроль РУДБТ, а также органов и учреждений Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, осуществляющих надзор за этими организациями.

2. Общие положения

2.1. РУДБТ предназначены для проведения неразрушающего радиационного контроля внутреннего содержимого различных объектов без их вскрытия. РУДБТ содержит техногенный источник ионизирующего излучения, представляющий потенциальную радиационную опасность для здоровья персонала и населения. Обращение с РУДБТ производится в соответствии с требованиями ОСПОРБ-99/2010 и СанПиН 2.6.1.2369—08.

- 2.2. Принцип действия РУДБТ 1-го типа основан на сканировании досматриваемого объекта в досмотровой камере за счет перемещения его транспортером через узкий веерообразный пучок рентгеновского излучения. Досмотровая камера окружена свинцовой защитой, обеспечивающей ослабление рентгеновского излучения до допустимого уровня. Вход и выход досмотровой камеры закрыты эластичными защитными шторками в виде вертикально подвешенных полосок из материала, содержащего свинец, для ослабления рассеянного от объекта контроля излучения до допустимого уровня. Выход прямого пучка рентгеновского излучения за пределы досмотровой камеры в нормальных условиях эксплуатации полностью исключен. РУДБТ 1-го типа могут оснащаться одной или несколькими рентгеновскими трубками для получения изображений в нескольких проекциях.
- 2.3. Принцип действия РУДБТ 2-го типа основан на просвечивании объекта досмотра, помещенного в досмотровую камеру, пироким пучком рентгеновского излучения. Досмотровая камера представляет собой шкаф с открывающейся дверкой для установки и извлечения объекта досмотра, имеющий сплошную свинцовую защиту, обеспечивающую ослабление рентгеновского излучения до допустимого уровня. В условиях нормальной эксплуатации возможность облучения человека прямым пучком рентгеновского излучения исключена. Дверка имеет блокировки, исключающие возможность генерации рентгеновского излучения при открытой дверке.
- 2.4. Операторы РУДБТ как лица, работающие с техногенными источниками, должны быть отнесены к персоналу группы А.
- 2.5. В соответствии с установленными п. 3.1 НРБ-99/2009 пределами доз допустимые значения мощности дозы в местах постоянного пребывания людей составляют:
 - в местах постоянного пребывания персонала группы А 10 мкЗв/ч;
 - в местах постоянного пребывания персонала группы Б 2,5 мкЗв/ч;
- на постоянных рабочих местах лиц, не отнесенных к персоналу группы A или B-0.5 мк3в/ч.
- 2.6. Допустимое значение мощности дозы рентгеновского излучения в любой доступной точке в 10 см от внешних поверхностей РУДБТ 1-го и 2-го типов, установленное СанПиН 2.6.1.2369—08, составляет 2.5 мкЗв/ч.

- 2.7. В качестве источника ионизирующего излучения в РУДБТ 1-го и 2-го типов используется рентгеновская трубка, являющаяся генерирующим источником ионизирующего излучения, т. е. не содержащим радиоактивных веществ источником, в котором ионизирующее излучение генерируется только после подключения питающих напряжений. В обесточенном состоянии РУДБТ не представляет радиационной опасности при перевозке и хранении.
- 2.8. Рентгеновские трубки, используемые в РУДБТ, генерируют излучение с максимальной энергией фотонов не более 500 кэВ. При такой энергии фотоядерные реакции невозможны и появление наведенной активности в досматриваемом объекте, окружающей среде и конструкциях РУДБТ исключено.
- 2.9. Для проведения радиационного контроля РУДБТ используют дозиметры рентгеновского излучения, предназначенные для измерения мощности амбиентного эквивалента дозы (амбиентной дозы) непрерывного рентгеновского излучения в диапазоне энергии от 15 до 500 кэВ и позволяющие непосредственно получать среднее значение измеренной величины и его статистическую погрешность.
- 2.10. При проведении радиационного контроля РУДБТ измеряют мощность амбиентного эквивалента дозы на расстоянии 10 см от всех доступных поверхностей установки, а также на рабочих местах на 4 высотах (30, 80, 120, 160 см) при максимальных рабочих значениях анодного напряжения и анодного тока рентгеновской трубки.
- 2.11. При проведении измерений в пучок излучения устанавливают имитатор объекта контроля в виде пластиковой емкости объемом не менее 5 литров, заполненной водой. Для РУДБТ, использующих несколько пучков рентгеновского излучения, имитаторы объектов контроля устанавливают в каждый пучок.
- 2.12. Проводят измерение мощности амбиентного эквивалента гамма-фона при выключенном РУДБТ. Фоновое значение вычитают из всех измеренных значений мощности амбиентного эквивалента дозы.

3. Проведение радиационного контроля РУДБТ

3.1. Измерение мощности дозы рентгеновского излучения на рабочих местах операторов РУДБТ 1-го типа

3.1.1. Измерение мощности амбиентного эквивалента дозы рентгеновского излучения на рабочих местах операторов РУДБТ 1-го типа проводят на 4 высотах (30, 80, 120, 160 см от пола) при максимальных рабочих значениях анодного напряжения и анодного тока рентгеновской трубки. В пучок излучения устанавливают имитатор объекта контроля в

виде пластиковой емкости объемом не менее 5 литров, заполненной водой. Имитатор располагают таким образом, чтобы пучок рентгеновского излучения проходил через его центр. Для РУДБТ, использующих несколько пучков рентгеновского излучения, имитаторы объектов контроля устанавливают в каждый пучок (рис. 1).

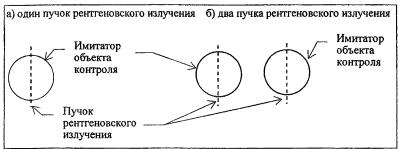


Рис. 1. Размещение имитатора объекта контроля (вид сверху)

- 3.1.2. При проведении измерений защитные шторки на входном и выходном окнах досмотровой камеры должны полностью перекрывать их, находясь при этом в неподвижном состоянии. Размещение имитаторов объектов контроля в пучках излучения должно обеспечивать их неподвижность в процессе контроля при постоянной генерации рентгеновского излучения.
- 3.1.3. Если на расстоянии менее 2 м от поверхности РУДБТ имеется постоянное рабочее место сотрудника, не отнесенного к персоналу группы А или Б, дополнительно проводят измерения мощности амбиентного эквивалента дозы и для этого рабочего места аналогично измерениям, проведенным для рабочего места оператора РУДБТ по п. 3.1.1.

3.2. Измерение мощности амбиентного эквивалента дозы рентгеновского излучения на внешней поверхности РУДБТ 1-го типа

3.2.1. Без установки имитатора объекта контроля проводят сканирование поверхности радиационной защиты РУДБТ в области падения прямого пучка излучения на передней и/или верхней стороне (в зависимости от направления пучка излучения в контролируемой РУДБТ) для проверки отсутствия дефектов радиационной защиты установки (рис. 4). Скорость перемещения дозиметра при этом не должна превышать 5 см в секунду. Затем проводят измерения мощности амбиентного эквивалента дозы в точках, расположенных на линии падения прямого пучка излучения с шагом не более 25 см, а также в точках, в которых зафиксированы

локальные максимумы при сканировании (при их наличии). Измерения проводят со статистической погрешностью не более 15 %.

3.2.2. Устанавливают имитатор объекта контроля, как это описано в п. 3.1.1, включают РУДБТ и проводят сканирование всех доступных поверхностей на наличие дефектов защиты. Сканирование осуществляют дозиметром по всем поверхностям РУДБТ, включая шторки, как показано на рис. 2, при максимальных рабочих параметрах рентгеновской трубки и скорости перемещения дозиметра не более 5 см в секунду.

При обнаружении во время сканирования локальных максимумов соответствующие точки отмечают для последующего проведения измерения в них мощности амбиентного эквивалента дозы.

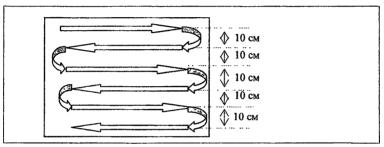


Рис. 2. Сканирование доступных поверхностей РУДБТ

- 3.2.3. Проводят измерения мощности амбиентного эквивалента дозы на всех внешних поверхностях РУДБТ. Точки измерения на каждой поверхности определяют следующим образом:
- каждую поверхность делят на прямоугольные зоны со сторонами не более 50 см:
- в каждой зоне выделяют точки, расположенные в четырех углах и в центре зоны (рис. 3). Для удобства проведения измерений рекомендуется предварительно отметить точки измерения мелом;
- выделяют точки, в которых при проведении сканирования по п. 3.2.2 обнаружены локальные максимумы;
- для поверхностей защитных шторок входного и выходного окон досмотровой камеры дополнительно выделяют точки по линиям прилегания шторок к окнам с шагом не более 25 см (рис. 4);
- во всех выделенных точках проводят измерения мощности амбиентного эквивалента дозы (мощности амбиентной дозы) со статистической погрешностью не более 15 %.

Измерения проводят при максимальных рабочих значениях анод-

ного напряжения и анодного тока рентгеновской трубки.

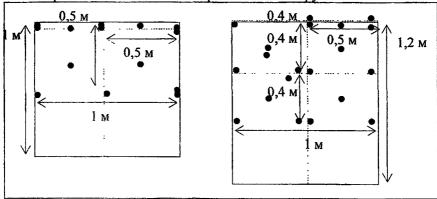


Рис. 3. Примеры выделения точек измерения на поверхностях РУДБТ

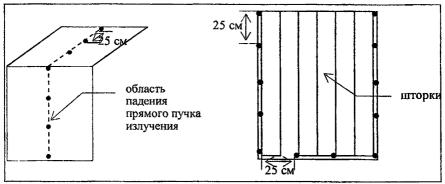


Рис. 4. Примеры выделения дополнительных точек измерения в зоне падения пучка излучения и на защитных шторках

3.3. Измерение мощности амбиентного эквивалента дозы рентгеновского излучения на рабочем месте оператора РУДБТ 2-го типа

3.3.1. Измерение мощности амбиентного эквивалента дозы ренттеновского излучения на рабочем месте оператора РУДБТ 2-го типа проводят на 4 высотах (30, 80, 120, 160 см) при максимальных рабочих значениях анодного напряжения и анодного тока рентгеновской трубки. При этом необходимо использовать имитатор объекта контроля в виде пластиковой емкости объемом не менее 5 л, заполненной водой. Имитатор устанавливают в центр площадки для размещения объекта контроля.

3.3.2. Если на расстоянии менее 2 м от поверхности РУДБТ имеется постоянное рабочее место сотрудника, не отнесенного к персоналу группы А или Б, дополнительно проводят измерения мощности амбиентного эквивалента дозы и для этого рабочего места аналогично измерениям, проведенным для рабочего места оператора РУДБТ по п. 3.3.1.

3.4. Измерение мощности амбиентного эквивалента дозы рентгеновского излучения на внешией поверхности РУДБТ 2-го типа

- 3.4.1. Проводят сканирование всех доступных поверхностей на наличие дефектов защиты. Сканирование осуществляют дозиметром по всем поверхностям РУДБТ так же как и для РУДБТ 1-го типа (п. 3.2.2), при максимальных рабочих параметрах рентгеновской трубки и скорости перемещения дозиметра не более 5 см в секунду. Дополнительно проводят сканирование по линии прилегания дверки к защитному шкафу. При обнаружении во время сканирования локальных максимумов соответствующие точки отмечают для последующего проведения измерения в них мощности амбиентного эквивалента дозы.
- 3.4.2. Выделяют точки измерения для каждой стенки защитного шкафа так же как и при проведении радиационного контроля РУДБТ 1-го типа (п. 3.2.3). Дополнительно выделяют точки измерения вдоль линии прилегания дверки к защитному шкафу с шагом не более 25 см (рис. 5) и точки, в которых при проведении сканирования обнаружены локальные максимумы.
- 3.4.3. Во всех выделенных точках проводят измерения мощности амбиентного эквивалента дозы (мощности амбиентной дозы) при максимальных рабочих значениях анодного напряжения и анодного тока рентгеновской трубки.

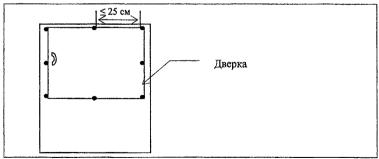


Рис. 5. Выделение точек измерения вдоль линии прилегания дверки к защитному шкафу

3.5. Оценка соответствия полученных результатов измерений допустимым значениям

- 3.5.1. В соответствии с СанПиН 2.6.1.2369—08 допустимое значение мощности дозы рентгеновского излучения на расстоянии 10 см от внешних поверхностей РУДБТ 1-го и 2-го типов равно 2,5 мкЗв/ч.
- 3.5.2. Радиационная защита РУДБТ соответствует требованиям радиационной безопасности, если сумма измереного значения и погрешности измерения мощности амбиентного эквивалента дозы для каждой точки измерения по п. 3.2 и 3.4 не превышает 2,5 мкЗв/ч (за вычетом фонового значения).
- 3.5.3. При соответствии измеренных значений мощности амбиентного эквивалента дозы на поверхности РУДБТ требованиям СанПиН 2.6.1.2369—08 (не более 2,5 мкЗв/ч) мощность дозы на рабочих местах персонала всегда будет соответствовать допустимым уровням.

По результатам измерений мощности амбиентного эквивалента дозы на рабочих местах персонала, эксплуатирующего РУДБТ (по п. 3.1 и 3.3), определяют максимальное значение данной величины, в качестве которого используют максимальный из результатов измерений, проведенных на 4 высотах.

3.5.4. Если на расстоянии менее 2 м от поверхности РУДБТ имеется постоянное рабочее место сотрудника, не отнесенного к персоналу группы А или Б, то условия работы РУДБТ соответствуют требованиям радиационной безопасности, если измеренное значение мощности амбиентного эквивалента дозы для каждой из 4 точек измерения на постоянном рабочем месте сотрудника, не отнесенного к персоналу, не превышает 0,5 мкЗв/ч (за вычетом фонового значения).

Радиационный контроль рентгеновских установок для досмотра багажа и товаров

Методические указания МУ 2.6.1.3386—16

Ответственный за выпуск Н. В. Митрохина Редакторы Л. С. Кучурова, Ю. А. Паршина Компьютерная верстка Е. В. Ломановой

Подписано в печать 22.12.16

Формат 60х90/16

Тираж 125 экз.

Печ. л. 0,75 Заказ 88

Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека 127994, Москва, Вадковский пер., д. 18, стр. 5, 7

Оригинал-макет подготовлен к печати и тиражирован отделением издательского обеспечения отдела научно-методического обеспечения Федерального центра гигиены и эпидемиологии Роспотребнадзора 117105, Москва, Варшавское ш., 19а Реализация печатных изданий, тел./факс: 8 (495) 952-50-89