Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Определение остаточных количеств люфенурона в ягодах и соке винограда методом высокоэффективной жидкостной хроматографии

Методические указания МУК 4.1.2285—07

ББК 51.21 Об0

- Обо Определение остаточных количеств люфенурона в ягодах и соке винограда методом высокоэффективной жидкостной хроматографии: Методические указания.—М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2009.—16 с.
 - 1. Разработаны Всероссийским научно-исследовательским институтом фитопатологии (Т. Н. Талалакина, А. М. Макеев).
 - 2. Рекомендованы к утверждению Комиссией по санитарно-гигиеническому нормированию Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (протокол № 2 от 21 июня 2007 г.).
 - 3. Утверждены Руководителем Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главным государственным санитарным врачом Российской Федерации Г. Г. Онищенко 28 сентября 2007 г.
 - 4. Вводятся в действие с 10 декабря 2007 г.
 - 5. Введены впервые.

ББК 51.21

> Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека 127994, Москва, Вадковский пер., д. 18/20

Оригинал-макет подготовлен к печати и тиражирован отделом информационно-издательского обеспечения Федерального центра гигиены и эпидемиологии Роспотребнадзора 117105, Москва, Варшавское ш., 19а Отделение реализации, тел./факс 952-50-89

- © Роспотребнадзор, 2009
- © Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2009

УТВЕРЖДАЮ

Руководитель Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главный государственный санитарный врач Российской Федерации

Г. Г. Онишенко

28 сентября 2007 г.

Дата введения: 10 декабря 2007 г.

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Определение остаточных количеств люфенурона в ягодах и соке винограда методом высокоэффективной жидкостной хроматографии

Методические указания МУК 4.1.2285—07

Настоящие методические указания устанавливают метод высокоэффективной жидкостной хроматографии для определения массовой концентрации люфенурона в ягодах и соке винограда в диапазоне 0.02—0.2 мг/кг.

Название вещества по ИСО: Люфенурон

Название вещества по ИЮПАЌ: (RS)-1-/2,5-дихлор-4-(1,1,2,3,3.3-гексафтор-пропокси)фенил/-3-(2,6-дифтор-бензоил)мочевина

C₁₇H₈Cl₂F₈N₂O₃ Мол. масса: 511,2

Бесцветное кристаллическое вещество без запаха, Температура плавления: 168,7—169,4 °C. Давление паров при 25 °C: 4×10^{-6} Па. Коэффициент распределения н-октанол-вода: K_{ow} log P=5,12. Растворимость ($r/дм^3$) при 20 °C: ацетон -460, толуол -72, этанол -41, гексан -0,13; растворимость в воде -0,00006.

Вещество стабильно на воздухе и на свету, медленно гидролизуется в водных растворах при pH 5—9 (DT $_{50}$ = 160 дней (pH 5), 70 дней (pH7) и 32 дня (pH9).

В биологически активных почвах в аэробных условиях люфенурон быстро разлагается почвенными микроорганизмами: $DT_{50} = 13$ —20 дней.

Краткая токсикологическая характеристика

Острая пероральная токсичность (LD_{50}) для крыс и мышей — более 2 000 мг/кг; острая дермальная токсичность (LD_{50}) для крыс — более 2 000 мг/кг; острая ингаляционная токсичность (LD_{50}) для крыс — более 2 350 мг/м³ воздуха. Люфенурон не оказывает раздражающего действия на кожу и слизистую оболочку глаз кролика. LC_{50} для рыб 30—70 мг/дм³ (96 ч). Инсектицид нетоксичен для диких животных, птиц, пчел, земляных червей, почвенных микроорганизмов и токсичен для дафний.

Рекомендуемый норматив для люфенурона в винограде -0.1 мг/кг. Область применения

Люфенурон – инсектоакарицид из группы ингибиторов синтеза хитина, эффективно уничтожает листогрызущие личинки чешуекрылых и жесткокрылых, эриофиидных клещей на хлопчатнике, овощных и декоративных культурах, винограде, семечковых плодовых, картофеле и кукурузе в течение вегетационного периода.

Применяется в России в качестве инсектоакарицида для обработки яблоневых садов, посадок картофеля и томатов при норме расхода 15—50 г д.в./га и одно-двукратной обработке за сезон. Помимо этого, люфенурон в составе смесевых препаратов используется на посадках косточковых плодовых культур и виноградниках.

1. Метрологические характеристики метода

Метрологические характеристики метода представлены в табл. 1 и 2. Таблица 1

Метрологические параметры

Анализи- руемый объект	Диапазон определяе- мых кон- центраций, мг/кг	Показатель точности (граница относительной погрешности), $\pm \delta$, $\% P = 0.95$	Стандартное отклонение повторяемости, σ_r , %	Предел повторяе- мости, <i>r</i> , %	Предел воспроиз- водимости, <i>R</i> , %
Ягоды	от 0,02 до 0,1 вкл.	50	3,6	10,1	15,6
винограда	более 0,1 до 0,2	25	2,8	7,8	12,2
Сок	от 0,02 до 0,1 вкл.	50	3,3	9,2	14,3
винограда	более 0,1 до 0,2	25	1,6	4,5	7,1

Полнота извлечения вещества, стандартное отклонение, доверительные интервалы среднего результата для полного диапазона концентраций (n = 20) приведены в таблице 2.

Таблица 2 Полнота извлечения вещества, стандартное отклонение, доверительный интервал среднего результата для n=20, P=0.95

	Метрологические параметры, $P = 0.95$, $n = 20$				
Анализи- руемый объект	предел обнаруже- ния, мг/кг	диапазон определяемых концентраций, мг/кг	среднее значение определе- ния, %	стандарт- ное от- клонение, <i>S</i> , %	доверительный интервал среднего результата, $\pm \%$
Ягоды винограда	0,02	0,02-0,2	85,1	3,6	± 3,3
Сок винограда	0,02	0,02-0,2	84,9	3,3	± 3,1

2. Метод измерений

Методика основана на определении вещества с помощью высокоэффективной жидкостной хроматографии (ВЭЖХ) с ультрафиолетовым детектором. Контроль люфенурона в матрице осуществляется по содержанию вещества после экстракции его из ягод метанолом, а из сока хлористым метиленом, очистки экстракта перераспределением в системе несмешивающихся растворителей, а также на колонке с силикагелем и концентрирующем патроне Диапак С8.

Количественное определение проводится методом абсолютной калибровки.

3. Средства измерений, вспомогательные устройства, реактивы и материалы

3.1 Средства измерений

Жидкостной хроматограф с ультрафиолетовым	Номер Госреестра
детектором с переменной длиной волны (фирма	№ 16848 - 03
Knauer, Германия)	
Весы аналитические ВЛА-200	ΓOCT 2104
Весы лабораторные общего назначения	
с наибольшим пределом взвешивания до 500 г и	
пределом допустимой погрешности ± 0,038 г	ΓΟCT 7328
Колбы мерные вместимостью 2-100-2, 2-1000-2	ΓΟCT 1770
Меры массы	ГОСТ 7328

МУК 4.1.2285-07

Пипетки градуированные 2-го класса точности,	
Пипетки градуированные 2-го класса точности, вместимостью $1,0;2,0;5,0;10,0$ см ³	ΓΟCT 29227
Пробирки градуированные с пришлифованной	
Пробирки градуированные с пришлифованной пробкой, вместимостью 5 см ³	ΓΟCT 1770
Цилиндры мерные 2-го класса точности,	ΓΟCT 1770
вместимостью 25, 50, 100, 500 и 1000 см ³	

Допускается использование средств измерения с аналогичными или лучшими характеристиками.

3.2. Реактивы

Люфенурон, аналитический стандарт с содержанием д.в. 99,7% (Сингента, Швейцария)	
Ацетонитрил для хроматографии, хч	ТУ 6-09-3534—87
Вода бидистиллированная или деионизованная	ГОСТ 6702
н-Гексан, хч	ТУ 6-09-3375
Метилен хлористый (дихлорметан), хч	ΓΟCT 12794
Метиловый спирт (метанол), хч	ГОСТ 6995
Натрий сернокислый, безводный, хч	ГОСТ 4166
Натрий хлористый, хч	ΓOCT 4233
Этиловый эфир уксусной кислоты, ч	ΓOCT 22300

Допускается использование реактивов иных производителей с аналогичной или более высокой квалификацией.

3.3. Вспомогательные устройства, материалы

Ванна ультразвуковая, модель D-50, фирма		
Branson Instr. Co. (CIIIA)		
Воронка Бюхнера	ΓΟCT 0147	
Воронки делительные, вместимостью 250 см ³	ΓOCT 25336	
Воронки конусные диаметром 30—37 и 60 мм	ΓOCT 25336	
Гомогенизатор	MPTY 42-1505	
Дефлегматор елочный	ΓOCT 9737	
Колба Бунзена, вместимостью 500 см ³	ГОСТ 5614	
Колбы круглодонные на шлифе, вместимостью		
50 и 100 cm ³	ΓΟCT 9737	
Колонка хроматографическая стеклянная,		
длиной 25 см и внутренним диаметром 8—10 мм		
Колонка хроматографическая, стальная, длиной		
15 см, внутренним диаметром 4,0 мм,		
содержащая Диасфер 110-С18 (5 мкм)		
Насос водоструйный вакуумный	ΓΟCT 10696	
Ротационный вакуумный испаритель ИР-1М	ТУ 25-11-917	

или ротационный вакуумный испаритель B-169 фирмы Buchi (Швейцария)
Стаканы химические, вместимостью 100 и 500 см³ ГОСТ 25336
Стекловата
Установка для перегонки растворителей
Фильтры бумажные «красная лента»,
обеззоленные
ТУ 6-09-2678
или фильтры из хроматографической бумаги

Ватман ЗММ Шприц для ввода образцов для жидкостного хроматографа, вместимостью 20—100 мм³ Шприц медицинский с разъемом Льюера, вместимостью 10 см³ ГОСТ 22090

Допускается применение другого оборудования с аналогичными или лучшими характеристиками.

4. Требования безопасности

- 4.1. При выполнении измерений необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007, требования электробезопасности при работе с электроустановками по ГОСТ 12.1.019, а также требования, изложенные в технической документации на жидкостной хроматограф.
- 4.2. Помещение должно соответствовать требованиям пожаробезопасности по ГОСТ 12.1.004 и иметь средства пожаротушения по ГОСТ 12.4.009. Содержание вредных веществ в воздухе не должно превышать норм, установленных ГН 2.2.5.1313—03 «Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны». Организация обучения работников безопасности труда по ГОСТ 12.0.004.

5. Требования к квалификации операторов

К выполнению измерений допускают специалистов, имеющих квалификацию не ниже лаборанта-исследователя с опытом работы на жидкостном хроматографе.

К проведению пробоподготовки допускают оператора с квалификацией «лаборант», имеющего опыт работы в химической лаборатории.

6. Условия измерений

При выполнении измерений соблюдают следующие условия:

 \bullet процессы приготовления растворов и подготовки проб к анализу проводят при температуре воздуха (20 \pm 5) °C и относительной влажности не более 80 %.

• выполнение измерений на жидкостном хроматографе проводят в условиях, рекомендованных технической документацией к прибору.

7. Подготовка к выполнению измерений

Измерениям предшествуют следующие операции: очистка органических растворителей (при необходимости), приготовление растворов, подвижной фазы для ВЭЖХ, кондиционирование хроматографической колонки, установление градуировочной характеристики, подготовка колонки с силикагелем и концентрирующих патронов Диапак С8.

7.1. Очистка органических растворителей

7.1.1. Очистка аиетонитрила

Ацетонитрил кипятят с обратным холодильником над пентоксидом фосфора не менее 1 часа, после чего перегоняют. Перед употреблением ацетонитрил повторно перегоняют над прокаленным карбонатом натрия.

7.1.2. Очистка н-гексана

Растворитель последовательно промывают порциями концентрированной серной кислоты до прекращения ее окрашивания в желтый цвет, затем водой до нейтральной реакции промывных вод, перегоняют над поташом.

7.1.3. Очистка этилацетата

Этилацетат промывают последовательно 5 %-ным водным раствором карбоната натрия, насыщенным раствором хлористого кальция, сушат над безводным карбонатом калия и перегоняют.

7.2. Подготовка колонки с силикагелем для очистки экстракта

Нижнюю часть стеклянной колонки длиной 25 см и внутренним диаметром 8-10 мм уплотняют тампоном из стекловаты, медленно выливают в колонку (при открытом кране) суспензию 5 г силикагеля в $20 \, \text{см}^3$ гексана. Дают растворителю стечь до верхнего края сорбента и помещают на него слой безводного сульфата натрия высотой 1 см. Колонку промывают $20 \, \text{см}^3$ смеси гексан-этилацетат (1:9, по объему) со скоростью 1-2 капли в сек., затем $30 \, \text{см}^3$ смеси гексан-этилацетат (9:1, по объему). После этого колонка готова к работе.

7.3. Проверка хроматографического поведения люфенурона на колонке с силикагелем

В круглодонную колбу вместимостью 10 см^3 помещают 0.1 см^3 градуировочного раствора $\mathbb{N} 2$ люфенурона с концентрацией 10 мкг/см^3 в ацетонитриле (п. 7.7.2) и отдувают растворитель током азота. Остаток

растворяют в $0.3~{\rm cm}^3$ этилацетата, помещая в ультразвуковую ванну на $1~{\rm mun}$, добавляют $2.7~{\rm cm}^3$ гексана, перемешивают и вновь помещают в ультразвуковую ванну на $1~{\rm mun}$. Раствор наносят на колонку с силикагелем, подготовленную по п. 7.2. Промывают колонку $50~{\rm cm}^3$ смеси гексан–этилацетат (9:1, по объему) со скоростью $1-2~{\rm kannu}$ в сек., элюат отбрасывают. Затем колонку промывают $60~{\rm cm}^3$ смеси гексан–этилацетат (8:2, по объему). Фракционно (по $10~{\rm cm}^3$) отбирают элюат, упаривают, остатки растворяют в $1~{\rm cm}^3$ ацетонитрила, помещая в ультразвуковую ванну на $1~{\rm mun}$, вносят $1~{\rm cm}^3$ подвижной фазы, подготовленной по п. 7.5, перемешивают и анализируют на содержание люфенурона по п. 9.5.

7.4. Подготовка концентрирующего патрона Диапак С8

Концентрирующий патрон Диапак С8 промывают с помощью медицинского шприца 5 см 3 ацетонитрила со скоростью прохождения растворителя через патрон 1—2 капли в сек., затем 5 см 3 смеси ацетонитрил—вода (5:5, по объему). Патрон готовят непосредственно перед использованием для очистки экстракта.

7.5. Подготовка подвижной фазы для ВЭЖХ

В мерную колбу вместимостью $1\,000~{\rm cm}^3$ помещают $600~{\rm cm}^3$ ацетонитрила, $400~{\rm cm}^3$ деионизованной воды, перемешивают, фильтруют через мембранный фильтр.

7.6. Кондиционирование хроматографической колонки

Промывают колонку для ВЭЖХ подвижной фазой, приготовленной по п. 7.5, при скорости подачи растворителя $1~{\rm cm}^3$ /мин не менее 2-х часов до установления стабильной базовой линии.

7.7. Приготовление градуировочных растворов

7.7.1. Исходный раствор люфенурона для градуировки (концентрация $100~\rm mkz/cm^3$). В мерную колбу вместимостью $100~\rm cm^3$ помещают $0,010~\rm r$ люфенурона, растворяют в $40-50~\rm cm^3$ ацетонитрила, доводят ацетонитрилом до метки, тщательно перемешивают.

Раствор хранят в морозильной камере при температуре -18 °C в течение 3-х месяцев.

7.7.2. Раствор люфенурона № 1 для градуировки (кониентрация 10 мкг/см³).

В мерную колбу вместимостью 100 см^3 помещают 10 см^3 исходного раствора люфенурона с концентрацией 100 мкг/см^3 (п. 7.7.1), разбавляют ацетонитрилом до метки. Этот раствор используют для приготовления рабочих градуировочных растворов N -- N -- 2—5, а также проб ягод и сока

с внесением при оценке полноты извлечения люфенурона из исследуемых образцов.

Градуировочный раствор № 1 хранят в морозильной камере при температуре не выше -18 °C в течение месяца.

7.7.3. Рабочие растворы №№ 2—5 люфенурона для градуировки (кониентрация 0,05—0,5 мкг/см³)

В 4 мерные колбы вместимостью $100~{\rm cm}^3$ помещают 0,5, 1,0, 2,5 и 5,0 ${\rm cm}^3$ градуировочного раствора № 1 люфенурона с концентрацией $10~{\rm mkr/cm}^3$ (п. 7.7.2), доводят до метки подвижной фазой, приготовленной по п. 7.5, тщательно перемешивают, получают рабочие растворы №№ 2—5 с концентрацией люфенурона 0,05, 0,1, 0,25 и 0,5 мкг/см³, соответственно.

Растворы готовят непосредственно перед употреблением.

7.8. Установление градуировочной характеристики

Градуировочную характеристику, выражающую зависимость высоты пика (мм) от концентрации люфенурона в растворе (мкг/см³), устанавливают методом абсолютной калибровки по 4 растворам для градуировки.

В инжектор хроматографа вводят по 20 мм³ каждого градуировочного раствора и анализируют в условиях хроматографирования по п. 9.5.

8. Отбор и хранение проб

Отбор проб производится в соответствии с «Унифицированными правилами отбора проб сельскохозяйственной продукции, продуктов питания и объектов окружающей среды для определения микроколичеств пестицидов (№ 2051-79 от 21.08.79) и правилами, определенными ГОСТом 25896—83 «Виноград свежий столовый». Пробы ягод хранят в стеклянной или полиэтиленовой таре в холодильнике не более 1 дня; для длительного хранения пробы замораживают и хранят в морозильной камере при температуре −18 °С. Сок получают из ягод непосредственно перед проведением анализа. Перед анализом ягоды измельчают.

9. Выполнение определения

9.1. Экстракция люфенурона

9.1.1. Ягоды. Навеску измельченного растительного материала массой 25 г помещают в стакан гомогенизатора вместимостью 500 см³, приливают 100 см³ метанола и гомогенизируют 3 мин при 10 000 об./мин. Суспензию фильтруют под вакуумом на воронке Бюхнера через бумажный фильтр в колбу вместимостью 250 см³. Остаток на фильтре промы-

вают 50 см 3 метанола. Экстракт и промывную жидкость переносят в химический стакан вместимостью 500 см 3 , перемешивают, измеряют объем раствора, 1/5 его часть (эквивалентна 5 г образца) переносят в круглодонную колбу вместимостью 100 см 3 . Дальнейшую очистку экстракта проводят по п. 9.2.

9.1.2. Сок. Навеску (20 г) свежевыжатого сока помещают в химический стакан вместимостью 100 см³, приливают 60 см³ деионизованной воды, перемешивают, измеряют объем раствора. Отбирают 1/4 объема раствора (эквивалентна 5 г образца), переносят в круглодонную колбу вместимостью 100 см³. Дальнейшую очистку экстракта проводят по п. 9.2.

9.2. Очистка экстракта перераспределением в системе несмешивающихся растворителей

Отобранные аликвоты экстрактов ягод и сока (из п.п. 9.1.1 и 9.1.2) упаривают на ротационном вакуумном испарителе до водного остатка (1—2 см³) при температуре 40 °C. К водному остатку приливают 50 см³ деионизованной воды, 20 см³ насыщенного раствора хлорида натрия, перемешивают и переносят в делительную воронку вместимостью 250 см³. В воронку вносят 30 см³ хлористого метилена, интенсивно встряхивают в течение 2-х минут. После разделения фаз органический слой фильтруют через слой безводного сульфата натрия в круглодонную колбу вместимостью 100 см³. Операцию экстракции водной фазы повторяют еще дважды, используя по 20 см³ хлористого метилена. Объединенную органическую фракцию, пропущенную через слой безводного сульфата натрия, упаривают досуха на ротационном вакуумном испарителе при температуре 30 °C. Дальнейшую очистку экстракта проводят по п.п. 9.3 и 9.4.

9.3. Очистка экстракта на колонке с силикагелем

Сухой остаток в круглодонной колбе, полученный по п. 9.2, растворяют в 0,3 см³ этилацетата, помещая в ультразвуковую ванну на 1 мин, добавляют 2,7 см³ гексана, перемешивают, вновь помещают в ультразвуковую ванну на 1 мин. Раствор наносят на колонку, подготовленную по п. 7.2. Колбу обмывают 5 см³ смеси гексан—этилацетат (9:1, по объему), которые также наносят на колонку. Промывают колонку 40 см³ смеси гексан—этилацетат (9:1, по объему) со скоростью 1—2 капли в сек., элюат отбрасывают. Люфенурон элюируют с колонки 60 см³ смеси гексан—этилацетат (8:2, по объему), собирая элюат непосредственно в круглодонную колбу вместимостью 100 см³. Раствор упаривают досуха на ротационном вакуумном испарителе при температуре 40 °C, и остаток подвергают дополнительной очистке на концентрирующем патроне Диапак С8 по п. 9.4.

9.4. Очистка экстракта на концентрирующем патроне Диапак С8

Сухой остаток в круглодонной колбе, полученный по п. 9.3, растворяют в 1.5 см³ ацетонитрила, помещая в ультразвуковую ванну на 1 мин. добавляют 1.5 см³ деионизованной воды, перемешивают, вновь помещают в ультразвуковую ванну на 1 мин. Раствор вносят с помощью медицинского шприца на концентрирующий патрон Диапак С8, подготовленный по п. 7.4, со скоростью 1—2 капли в сек. Колбу обмывают 3 см³ смеси ацетонитрил-вода (5:5, по объему), которые также вносят на патрон. После нанесения пробы патрон промывают 5 см³ смеси ацетонитрил-вода (5:5, по объему), элюат отбрасывают. Люфенурон элюируют с патрона 13 см³ смеси ацетонитрил-вода (7:3, по объему) в круглодонную колбу вместимостью 50 см³. Раствор упаривают досуха на ротационном вакуумном испарителе при температуре 40 °C. Остаток в колбе растворяют в 1 см³ ацетонитрила, помещая в ультразвуковую ванну на 1 мин, вносят 1 см³ подвижной фазы, подготовленной по п. 7.5, перемешивают и анализируют на содержание люфенурона по п. 9.5.

9.5. Условия хроматографирования

Жидкостной хроматограф с ультрафиолетовым детектором (фирмы Knauer, Германия)

Колонка стальная длиной 15 см, внутренним диаметром 4 мм, заполненная Диасфером 110-С18 (5 мкм)

Температура колонки: комнатная

Подвижная фаза: ацетонитрил–вода (6: 4, по объему)

Скорость потока элюента: 1.0 см³/мин

Рабочая длина волны: 254 нм

Чувствительность детектора: 0,005 ед. абсорбции на шкалу

Объем вводимой пробы: 20 мм³

Время удерживания люфенурона: 19 мин Линейный диапазон детектирования: 1—10 нг

Образцы, дающие пики большие, чем стандартный раствор с кон-

центрацией 0.5 мкг/см³, разбавляют подвижной фазой, приготовленной по п. 7.5.

Альтернативная неподвижная фаза: Диасорб 130-С16 (5 мкм)

Время удерживания люфенурона: около 21.2 мин.

10. Обработка результатов анализа

Содержание люфенурона рассчитывают методом абсолютной калибровки по формуле:

$$X = \frac{H_1 \cdot A \cdot V}{H_0 \cdot m}$$
 , где

X – содержание люфенурона в пробе, мг/кг;

 H_1 – высота пика образца, мм;

 H_0 – высота пика стандарта, мм;

A – концентрация стандартного раствора люфенурона, мкг/см³;

V – объем экстракта, подготовленного для хроматографирования, см 3 ;

m – масса анализируемой части образца, г (для ягод и сока – 5 г).

11. Проверка приемлемости результатов параллельных определений

За результат анализа принимают среднее арифметическое результатов двух параллельных определений, расхождение между которыми не превышает предела повторяемости (1):

$$\frac{2 \cdot |X_1 - X_2| \cdot 100}{(X_1 + X_2)} \le r, \text{ где}$$
 (1)

 X_1, X_2 – результаты параллельных определений, мг/кг;

r – значение предела повторяемости (табл. 1), при этом r = 2,8 σ_r .

При невыполнении условия (1) выясняют причины превышения предела повторяемости, устраняют их и вновь выполняют анализ.

12. Оформление результатов

Результат анализа представляют в виде:

$$(\,\overline{X}\,\pm\Delta)\,$$
 мг/кг при вероятности P = 0,95, где

 \overline{X} – среднее арифметическое результатов определений, признанных приемлемыми, мг/кг;

 Δ – граница абсолютной погрешности, мг/кг;

$$\Delta = \delta \cdot \frac{X}{100}$$
,

 δ — граница относительной погрешности методики (показатель точности в соответствии с диапазоном концентраций, табл. 1), %.

В случае, если содержание компонента менее нижней границы диапазона определяемых концентраций, результат анализа представляют в виде:

«содержание вещества в пробе «менее нижней границы определения» менее 0,02 мг/кг для ягод и сока винограда*

*-0.02мг/кг — предел обнаружения для ягод и сока винограда.

13. Контроль качества результатов измерений

Оперативный контроль погрешности и воспроизводимости измерений осуществляется в соответствии с ГОСТ Р ИСО 5725-1-6—2002 «Точность (правильность и прецизионность) методов и результатов измерений».

- 13.1. Стабильность результатов измерений контролируют перед проведением измерений, анализируя один из градуировочных растворов.
- 13.2. Плановый внутрилабораторный оперативный контроль процедуры выполнения анализа проводится с применением метода добавок.

Величина добавки C_{∂} должна удовлетворять условию:

$$C_{\hat{o}} = \Delta_{{\scriptscriptstyle {\it I}},\overline{X}} + \Delta_{{\scriptscriptstyle {\it I}},\overline{X'}}$$
, где

 $\pm \Delta_{n,\overline{X}} \Big(\pm \Delta_{n,\overline{X'}} \Big)$ — характеристика погрешности (абсолютная погрешность) результатов анализа, соответствующая содержанию компонента в испытуемом образце (расчетному значению содержания компонента в образце с добавкой соответственно) мг/кг, при этом:

$$\Delta_{\pi} = \pm 0.84 \Delta$$
, где

 Δ – граница абсолютной погрешности, мг/кг;

$$\Delta = \mathcal{S} \cdot \frac{X}{100} \,,$$

 δ – граница относительной погрешности методики (показатель точности в соответствии с диапазоном концентраций, табл. 1), %.

Результат контроля процедуры К_к рассчитывают по формуле:

$$K_{\kappa} = \overline{X'} - \overline{X} - C_{\lambda}$$
, где

 $\overline{X'}$, \overline{X} , C_{∂} – среднее арифметическое результатов параллельных определений (признанных приемлемыми по п. 11) содержания компонента в образце с добавкой, испытуемом образце, концентрация добавки, соответственно, мг/кг;

Норматив контроля K рассчитывают по формуле

$$K = \sqrt{\Delta_{n,\overline{X}}^2 + \Delta_{n,\overline{X}}^2}$$

Проводят сопоставление результата контроля процедуры (K_{κ}) с нормативом контроля (K).

Если результат контроля процедуры удовлетворяет условию

$$\mid K_{\kappa} \mid \leq K, \tag{2}$$

процедуру анализа признают удовлетворительной.

При невыполнении условия (2) процедуру контроля повторяют. При повторном невыполнении условия (2) выясняют причины, приводящие к неудовлетворительным результатам, и принимают меры по их устранению.

13.3. Проверка приемлемости результатов измерений, полученных в условиях воспроизводимости:

Расхождение между результатами измерений, выполненных в двух разных лабораториях, не должно превышать предела воспроизводимости (R)

$$\frac{2 \cdot |X_1 - X_2| \cdot 100}{(X_1 + X_2)} \le R , \text{ где}$$
 (3)

 X_1, X_2 – результаты измерений в двух разных лабораториях, мг/кг; R – предел воспроизводимости (в соответствии с диапазоном концентраций, табл. 1), %.

14. Разработчики

Талалакина Т. Н., науч. сотр., Макеев А. М., зав. лаб., канд. биол. наук.

ГНУ ВНИИ фитопатологии, 143050, Московская обл., п/о Большие Вяземы.

Приложение Таблица

Полнота извлечения люфенурона из образцов ягод и сока винограда (n = 5)

Матрица	Внесено, мг/кг	Открыто, %	Доверительный интервал среднего результата, %	
Ягоды винограда	0,02	82,7	± 4,1	
	0,04	84,9	± 3,6	
	0,10	85,8	± 3,5	
	0,20	87,0	± 3,3	
Сок винограда	0,02	83,0	± 3,3	
	0,04	84,0	± 3,1	
	0,10	85,4	± 3,0	
	0,20	87,4	± 1,6	