УТВЕРЖДАЮ

Главный государственный санитарный врач Российской Федерации, Первый заместитель Министра здравоохранения Российской Федерации

Г. Г. Онищенко

29 июня 2003 г.

Дата введения: с момента утверждения

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Измерение массовых концентраций (2S,5R,6R)-6-[[(R)-амино-(4-гидроксифенил)ацетил]амино]-3,3-диметил-7-оксо-4-тиа-1-азабицикло[3.2.0]гептан-2-карбоновой кислоты тригидрата (амоксициллина тригидрата) в воздухе рабочей зоны методом высокоэффективной жидкостной хроматографии

Методические указания МУК 4.1.1616—03

1. Область применения

Настоящие методические указания устанавливают количественный хроматографический анализ воздуха рабочей зоны на содержание (2S,5R,6R)-6-[[(R)-амино-(4-гидроксифенил)ацетил]амино]-3,3-диметил-7-оксо-4-тиа-1-азабицикло-[3.2.0]гептан-2-карбоновой кислоты тригидрата (амоксициллина тригидрата) в диапазоне концентраций от 0,05 до 1 мг/м³

2. Характеристика вещества

2.1. Структурная формула

HO — CH.CO.NH.CH – CH
$$C$$
 CH_3 CH

- 2.2. Эмпирическая формула C₁₆H₂₅N₃O₈S.
- 2.3. Молекулярная масса 419,4.
- 2.4. Регистрационный номер CAS 61336-70-7.

2.5. Физико-химические свойства.

Амоксициллина тригидрат — антибиотик широкого спектра действия из группы полусинтетических пенициллинов, кристаллический порошок белого цвета, T_{nn} 160—180 °C, малорастворим в воде и этиловом спирте, практически не растворим в эфире и жировых маслах, растворим в разбавленных кислотах и разбавленных гидроксидах щелочных металлов, растворим в смеси ацетонитрила и воды при рН 5 (элюенте).

Агрегатное состояние в воздухе – аэрозоль.

2.6. Токсикологическая характеристика.

Амоксициллина тригидрат обладает антимикробным и слабым аллергенным свойствами.

Предельно допустимая концентрация (ПДК) в воздухе рабочей зоны $0.1 \, \text{мг/м}^3$. Класс опасности – второй.

3. Погрешность измерений

Методика обеспечивает выполнение измерений массовых концентраций амоксициллина тригидрата с погрешностью не более \pm 23 % при доверительной вероятности 0,95.

4. Метод измерений

Измерения массовых концентраций амоксициллина тригидрата основаны на использовании высокоэффективной жидкостной хроматографии с применением спектрофотометрического детектора.

Отбор проб проводится с концентрированием на фильтр.

Нижний предел измерения содержания амоксициллина тригидрата в хроматографируемом объеме раствора 0,010 мкг.

Нижний предел измерения концентрации амоксициллина тригидрата в воздухе 0,05 мг/м³ (при отборе 400 дм³ воздуха).

Определению не мешают сопутствующие вещества (целлюлоза микрокристаллическая, титана диоксид, поливинилпирролидон низкомолекулярный, магний стеариново-кислый, оксипропилцеллюлоза).

5. Средства измерений, вспомогательные устройства, материалы, реактивы

5.1. Средства измерений, вспомогательные устройства, материалы

Хроматограф жидкостный микроколоночный «Милихром» со спектрофотометрическим детектором при длине волны 254 нм Хроматографическая колонка стальная КАХ-44-3, 50 × 2 мм, заполненная сорбентом Сепарон С18, фракция 5 мкм Весы знапитические ВЛА-200

ΓΟCT 24104---88E

Пробоотборное устройство ПУ-3Э	ТУ 4215-000-11696625—95
Фильтродержатель	ТУ 95.72.05—77
Устройство для фильтрации жидкостей	
НПФ «Биохром»	
Колбы мерные, вместимостью 50, 100 и 500 см ³	ΓΟCT 1770—74E
Цилиндры мерные, вместимостью 100 см ³	ΓΟCT 1770—74E
Пипетки, вместимостью от 1 до 10 см ³	ΓOCT 29227—91
Бюксы ⁵⁰ / ₃₀	ΓOCT 25336—82E
Пробирки с пришлифованными пробками,	
вместимостью 10 см3	ΓOCT 25336—82E
Фильтры АФА-ВП-10	ТУ 95-74380
Фильтры «Владипор» типа ММФК-1Г	ТУ 6-05-221-433—79

5.2. Реактивы

Амоксициллина тригидрат, № регистрации 005523 от 25.11.94, содержание основного вещества не менее 95 и не более 105 % в пересчете на безводное вещество Ацетонитрил для жидкостной хроматографии Калий дигидрофосфат, хч ГОСТ 4198—75 Кислота ортофосфорная, хч ГОСТ 6552—58 Вода дистиллированная ГОСТ 6709—72

Допускается применение иных средств измерения, вспомогательных устройств, реактивов и материалов, обеспечивающих показатели точности, установленные для данных методических указаний.

6. Требования безопасности

- 6.1. При работе с реактивами соблюдают требования безопасности, установленные для работы с токсичными, едкими и легковоспламеняющимися веществами по ГОСТ12.1.005—88.
- 6.2. При проведении анализов горючих и вредных веществ соблюдают меры противипожарной безопасности по ГОСТ 12.1.004—76.
- 6.3. При выполнении измерений с использованием хроматографа соблюдают правила электробезопасности в соответствии с ГОСТ 12.1.019—79 и инструкцией по эксплуатации прибора.

7. Требования к квалификации оператора

К выполнению измерений и обработке результатов допускаются лица с высшим и средним специальным образованием, имеющие навыки работы на жидкостном хроматографе.

8. Условия измерений

- 8.1. Приготовление растворов и подготовку проб к анализу проводят в нормальных условиях при температуре воздуха (20 ± 5) °C, атмосферном давлении 84—106 кПа и влажности воздуха не более 80 %.
- 8.2. Измерения на жидкостном хроматографе проводят в условиях, рекомендованных технической документацией к прибору.

9. Подготовка к выполнению измерения

9.1. Приготовление растворов

- 9.1.1. Стандартный раствор № 1 амоксициллина тригидрата в растворе элюента концентрацией 400 мкг/см³ готовится растворением 20 мг вещества в мерной колбе вместимостью 50 см³.
- 9.1.2. Стандартный раствор № 2 амоксициллина тригидрата в растворе элюента концентрацисй 40 мкг/см³ готовится разбавлением стандартного раствора № 1. Растворы устойчивы в течение месяца при хранении в холодильникс.
- 9.1.3. Раствор дигидрофосфата калия концентрацией 0,05 М готовят растворением 1,36 г указанной соли в 200 см³ дистиллированной воды в колбе данного объема.
- 9.1.4. Раствор элюента готовят смешением в мерной колбе на 100 см³ 95 см³ 0,05 М раствора дигидрофосфата калия и 5 см³ ацетонитрила, который прибавляют пипеткой. Раствор доводят до рН 5 ортофосфорной кислотой. Непосредственно перед измерением раствор фильтруют с помощью устройства для фильтрации и фильтров «Владипор» и дегазируют под вакуумом.

9.2. Подготовка прибора

Общую подготовку прибора осуществляют согласно инструкции по эксплуатации.

9.3. Установление градуировочной характеристики

Градуировочную характеристику, выражающую зависимость величины хроматографического сигнала от массы анализируемого вещества в хроматографируемом объеме раствора, устанавливают по методу абсолютной калибровки с использованием серии градуировочных растворов, которые готовят разбавлением стандартного раствора № 2 в пробирках с пришлифованными пробками согласно табл. 1. Растворы устойчивы в течение недели при хранении в холодильнике.

Условия хроматографирования градуировочных смесей и анализируемых проб:

состав элюента – ацетонитрил-0,05 М дигидрофосфата калия, 5:95, рН 5;

скорость потока элюента 100 мм³/мин; объем вводимой пробы 5 мм³; длина волны спектрофотометрического детектора 254 нм; время удерживания амоксициллина тригидрата 3 мин. Растворы помещают в пробоотборное устройство хроматографа.

На полученной хроматограмме измеряют площади пиков с помощью интегратора хроматографа (в условных единицах) при анализе 6 растворов разных концентраций и растворителя, проводя не менее 5 параллельных определений для каждого раствора, и строят градуировочную кривую зависимости площади пика от количества компонента в хроматографируемом объеме пробы (мкг). Проверку градуировочного графика проводят при изменении условий анализа, но не реже 1 раза в месяп.

Таблица 1 Растворы для установления градуировочной характеристики при определении амоксициллина тригидрата

№ стан- дарта	Стандартный раствор амокси- циллина № 2, см³	Раствор элюента, см ³	Концентрация вещества, мкг/см ³	Содержание вещества в хроматографируемом объеме пробы, мкг
1	0	10	0	0
2	0,5	9,5	2	0,01
3	1,0	9,0	4	0,02
4	1,75	8,25	7	0,035
5	2,5	7,5	10	0,05
6	5	5	20	0,1
7	10	0	40	0,2

9.4. Отбор пробы воздуха

Воздух с объемным расходом 20 дм³/мин аспирируют через фильтр АФА ВП-10. Для измерения ½ ПДК амоксициллина тригидрата достаточно отобрать 400 дм³ воздуха. Пробы можно хранить в течение трех суток.

10. Выполнение измерения

Фильтр с отобранной пробой помещают в бюкс с пришлифованной крышкой и приливают пипеткой 5 см³ раствора элюента. Периодически встряхивая, выдерживают раствор в течение 5 мин и сливают его в пробирку. Аналогичным образом проводят повторную экстракцию с фильтра и объединяют растворы. Степень десорбции с фильтра 94 %. Хроматографирование раствора пробы проводят в тех же условиях, что

2-1654

и хроматографирование градуировочных растворов. Количественное определение содержания анализируемого вещества в растворе проводят по предварительно построенному градуировочному графику.

11. Расчет концентрации

Концентрацию амоксициллина тригидрата (C, мг/м³) в воздухе вычисляют по формуле:

$$C = \frac{a \cdot b}{6 \cdot V}$$
, rge

a – содержание вещества в анализируемом объеме пробы, найденное по градуировочному графику, мкг;

6 – объем пробы, взятый для хроматографирования, см³;

в – общий объем раствора пробы, см³;

V – объем воздуха, отобранного для анализа и приведенного к стандартным условиям, дм³ (см. прилож. 1).

12. Оформление результатов анализа

Результат количественного анализа представляют в виде $(C \pm \Delta)$ мг/м³, P = 0.95, где Δ – характеристика погрешности, $\Delta = 0.17C + 0.003$.

13. Контроль погрешности методики

Значения характеристики погрешности, норматива оперативного контроля точности и норматива оперативного контроля воспроизводимости приведены в табл. 2 в виде зависимости от значения массовой концентрации анализируемого компонента в пробс *C*.

Таблица 2

Результаты метрологической аттесгации методики количественного химического анализа

ı	Диапазон	Наименование метрологической характеристики			
ı	определяемых	Характеристика	Норматив опера-	Норматив оперативного	
ı	концентраций амоксициллина, мг/м ³		тивного контроля	контроля воспроизводи-	
ı			точности К, мг/м3	мости D , мг/м ³	
ı	1911 / 191		(P=0.90, m=2)	(P=0.95, m=2)	
ı	От 0,05 до 1,0	0,003 + 0,17C	0,003 + 0,19 <i>C</i>	0,007 + 0,10 <i>C</i>	

13.2. Оперативный контроль воспроизводимости

Оперативный контроль воспроизводимости выполняют в одной серии с анализом рабочих проб. Отбирают реальные пробы воздуха рабочей зоны из одного традиционного места отбора двумя пробоотборни-

ками одновременно. Анализируют в соответствии с прописью методики, максимально варьируя условия проведения анализа: партии реактивов, наборы мерной посуды и т. д., и получают два результата C_I и C_2 анализов. Результаты анализа не должны отличаться друг от друга на величину большую, чем норматив оперативного контроля воспроизводимости D:

$$|C_1-C_2|\leq D$$

При превышении расхождения между двумя результатами норматива оперативного контроля воспроизводимости эксперимент повторяют. При повторном превышении указанного норматива выясняют причины, приводящие к неудовлетворительным результатам, и устраняют их.

13.3. Оперативный контроль точности

Оперативный контроль точности выполняют в одной серии с анализом рабочих проб. Отбирают реальные пробы воздуха рабочей зоны из одного традиционного места отбора двумя пробоотборниками одновременно. Затем к одной пробе, отобранной на фильтр, делают добавку анализируемого компонента δC из раствора, нанося его на фильтр. Величина добавки должна соответствовать 50—150 % от содержания компонента в пробе. Результаты анализа C_I без добавки и C_2 с добавкой получают по возможности в одинаковых условиях: одним аналитиком, с одной партией реактивов, с одним набором посуды и т. д. Погрешность процедуры отбора проб контролируют путем поверки используемых пробоотборников. Расчет норматива оперативного контроля погрешности K проводят по характеристике погрешности методики за вычетом характеристики погрешности пробоотборника. Решение об удовлетворительной погрешности принимают при выполнении условия:

$$|C_2-C_1-\delta C| \leq K$$

14. Нормы затрат времени на анализ

Для проведения серии анализов из 6 проб при последовательном отборе проб воздуха требуется 4 ч.

Методические указания разработаны Российским государственным медицинским университетом (Е. Б. Гугля).