Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Измерение концентраций вредных веществ в воздухе рабочей зоны

Сборник методических указаний МУК 4.1.1711—4.1.1733—03

Выпуск 45

ББК 51.21 И37

- ИЗ7 **Измерение** концентраций вредных веществ в воздухе рабочей зоны: Сборник методических указаний.—М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2008.—199 с.
 - 1. Подготовлены творческим коллективом специалистов Научноисследовательского института медицины труда РАМН в составе: Л. Г. Макеева руководитель, Г. В. Муравьева, Е. М. Малинина, Е. Н. Грицун, Г. Ф. Громова, при участии А. И. Кучеренко (Департамент Госсанэпиднадзора Минздрава России).
 - 2. Рекомендованы к утверждению на совместном заседании группы Главного эксперта Комиссии по государственному санитарно-эпидемиологическому нормированию по проблеме «Лабораторно-инструментальное дело и метрологическое обеспечение» и методбюро п/секции «Промышленно-санитарная химия» Проблемной комиссии «Научные основы медицины труда».
 - 3. Утверждены и введены в действие Главным государственным санитарным врачом Российской Федерации, Первым заместителем Министра здравоохранения Российской Федерации 29 июня 2003 г.
 - 4. Введены впервые.

ББК 51.21

[©] Роспотребнадзор, 2008

[©] Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2008

Содержание

Введение	5
Измерение массовых концентраций аммоний перрената з воздухе рабочей зоны методом атомно-абсорбционной спектрофотометрии: МУК 4.1.1711—03	5
Спектрофотометрическое измерение массовых концентраций 1-бензил-1-фенилгидразина гидрохлорида в воздухе рабочей зоны: МУК 4.1.1712—031	3
Спектрофотометрическое измерение массовых концентраций бензол-1,2-дикарбонового альдегида (ортофталевый альдегид) в воздухе рабочей зоны: МУК 4.1.1713—032	1
Спектрофотометрическое измерение массовых концентраций N, N' – бис (диацетил) этан – 1,2-диамина (тетраацетилэтилендиамина) в воздухе рабочей зоны: МУК 4.1.1714—032	9
Спектрофотометрическое измерение массовых концентраций бис (1метилэтил) нафталинсульфоновой кислоты натриевой соли (супражила WP) в воздухе рабочей зоны: МУК 4.1.1715—03	7
Спектрофотометрическое измерение массовых концентраций 1-гексадецил-пиридиний хлорида моногидрата (цетилпиридиний хлорид моногидрат) з воздухе рабочей зоны: МУК 4.1.1716—034	5
Фотометрическое измерение массовых концентраций тексафторида селена в воздухе рабочей зоны: МУК 4.1.1717—03	3
Газохроматографическое измерение массовых концентраций 1,1,1,2,3,3,3-гептафторпропана (хладона-227 _{еа}) з воздухе рабочей зоны: МУК 4.1.1718—036-	4
Спектрофотометрическое измерение массовых концентраций 4-гидроксиметил-4-метил-1-фенилпиразолидона (димезона S) з воздухе рабочей зоны: МУК 4.1.1719—0372	2
Спектрофотометрическое измерение массовых концентраций N,N-диметил-N-[3-[1-оксотетрадецил)амино]-пропил] 5ензолметанамминий хлорида гидрата (мирамистина) з воздухе рабочей зоны: МУК 4.1.1720—0380	0
Спектрофотометрическое измерение массовых концентраций N-(1,1-диметилэтил)-2-бензотиазолсульфенамида (сульфенамида Т) з воздухе рабочей зоны: МУК 4.1.1721—038	8
Спектрофотометрическое измерение массовых концентраций 2,5-диоксо-3-(2-пропенил)-1-имидозолидилметил (1 RS)- цис, гранс-2,2-диметил- 3-(2-метилпропенил) циклопропан карбоксилата имипротрина) в возлухе рабочей зоны: МУК 4,1,1722—03	7

МУК 4.1.1711—4.1.1733—03

Измерение массовых концентраций 2-имидазолидинона (этиленмочевина) в воздухе рабочей зоны методом высокоэффективной жидкостной хроматографии: МУК 4.1.1723—03	105
Спектрофотометрическое измерение массовых концентраций калия фто аддукта с гидропероксидом (1 : 1) (пероксогидрата-фторида калия) (ПФК) в воздухе рабочей зоны: МУК 4.1.1724—03	•
Спектрофотометрическое измерение массовых концентраций метилен-бис (полиметилнафтила сульфоната) натрия (супражил MNS/90) в воздухе рабочей зоны: МУК 4.1.1725—03	121
Газохроматографическое измерение массовых концентраций 3-метиленциклобутанкарбонитрила (циклобутанкарбонитрила) в воздухе рабочей зоны: МУК 4.1.1726—03	129
Измерение массовых концентраций S-метил-N-(метилкарбомоил)- окситиоацетимидата (метомила) в воздухе рабочей зоны методом высокоэффективной жидкостной хроматографии: МУК 4.1.1727—03	138
Спектрофотометрическое измерение массовых концентраций 2-(4-метокси-6-метил-1,3,5-триазин-2-ил-карбамоилсульфамоил) бензойной кислоты (метсульфурон-метила) в воздухе рабочей зоны: МУК 4.1.1728—03	146
Спектрофотометрическое измерение массовых концентраций 2-[4-метокси-6-метил-1,3,5-триазин-2-ил (метил) карбамоилсульфамоил] бензойной кислоты (трибенуронметила) в воздухе рабочей зоны: МУК 4.1.1729—03	154
Газохроматографическое измерение массовых концентраций 3-оксо-2-(трифторметил) додекафтороктановой кислоты (перфтор-2-метил-3-оксаоктановой кислоты) в воздухе рабочей зоны: МУК 4.1.1730—03	162
Измерение массовых концентраций 1-(4-хлорбензоил)— 5-метокси-2-метил-1Н-индол-3-этановой кислоты (индометацин) в воздухе рабочей зоны методом высокоэффективной жидкостной хроматографии (ВЭЖХ): МУК 4.1.1731—03	170
Спектрофотометрическое измерение массовых концентраций этандионовой кислоты дигидрата (щавелевой кислоты дигидрата) в воздухе рабочей зоны: МУК 4.1.1732—03	178
Газохроматографическое измерение массовых концентраций этил-трет-бутилового эфира (ЭТБЭ) в воздухе рабочей зоны: МУК 4.1.1733—03	187
Приложение 1. Приведение объема воздуха к стандартным условиямПриложение 2. Коэффициенты для приведения объема воздуха	197
к стандартным условиям	

Введение

Методические указания «Измерение концентраций вредных веществ в воздухе рабочей зоны» (выпуск 45) разработаны с целью обеспечения контроля соответствия фактических концентраций вредных веществ их предельно допустимым концентрациям (ПДК) и ориентировочным безопасным уровням воздействия (ОБУВ) и являются обязательными при осуществлении санитарного контроля.

Включенные в данный сборник 23 мстодики контроля вредных веществ в воздухе рабочей зоны разработаны и подготовлены в соответствии с требованиями ГОСТ 12.1.005—88 ССБТ «Воздух рабочей зоны. Общие санитарно-гигиенические требования», ГОСТ Р 8.563—96 «Государственная система обеспечения единства измерений. Методики выполнения измерений», МИ 2335—95 «Внутренний контроль качества результатов количественного химического анализа», МИ 2336—95 «Характеристики погрешности результатов количественного химического анализа. Алгоритмы оценивания».

Методики выполнены с использованием современных методов исследования, метрологически аттестованы и дают возможность контролировать концентрации химических веществ на уровне и ниже их ПДК и ОБУВ в воздухе рабочей зоны, установленных ГН 2.2.5.1313—03 «Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны», ГН 2.2.5.1314—03 «Ориентировочные безопасные уровни воздействия (ОБУВ) вредных веществ в воздухе рабочей зоны» и дополнениями к ним.

Методические указания по измерению массовых концентраций вредных веществ в воздухе рабочей зоны предназначены для центров госсанэпиднадзора, санитарных лабораторий промышленных предприятий при осуществлении контроля за содержанием вредных веществ в воздухе рабочей зоны, а также научно-исследовательских институтов и других заинтересованных министерств и ведомств.

УТВЕРЖДАЮ

Главный государственный санитарный врач Российской Федерации, Первый заместитель Министра здравоохранения Российской Федерации Г. Г. Онищенко

29 июня 2003 г.

Дата введения: с момента утверждения

4.1. МЕТОДЫ КОНТРОЛЯ. ХИМИЧЕСКИЕ ФАКТОРЫ

Спектрофотометрическое измерение массовых концентраций бис (1метилэтил) нафталинсульфоновой кислоты натриевой соли (супражила WP) в воздухе рабочей зоны

Методические указания МУК 4.1.1715—03

1. Область применения

Настоящие методические указания устанавливают количественный спектрофотометрический анализ воздуха рабочей зоны на содержание супражила WP в диапазоне массовых концентраций 0,25—2,00 мг/м³.

2. Характеристика вещества

2.1. Структурная формула

- 2.2. Эмпирическая формула C₁₆ H₂₀ O₃ S Na.
- 2.3. Молекулярная масса 315,39.
- 2.4. Регистрационный номер CAS 1322-93-6.
- 2.5. Физико-химические свойства.

Супражил WP — мелкодисперсный порошок белого цвета с бежеватым оттенком и очень слабым характерным запахом, растворим в воде, кислотах, щелочах, практически нерастворим в органических растворителях, $T_{\rm rm}$ = 204 °C.

Агрегатное состояние в воздухе – аэрозоль.

2.6. Токсикологическая характеристика.

Супражил WP обладает раздражающим действием.

Второй класс опасности.

Предельная допустимая концентрация (ПДК) супражила WP в воздухе рабочей зоны $0.5~{\rm Mr/m}^3$.

3. Погрешность измерений

Методика обеспечивает выполнение измерений супражила WP с относительной погрешностью, не превышающей \pm 25 %, при доверительной вероятности 0,95.

4. Метод измерений

Измерение массовой концентрации супражила WP выполняют методом спектрофотометрии.

Метод основан на измерении светопоглощения растворов супражила WP в 0,1 н растворе соляной кислоты.

Измерение проводят при длине волны 230 нм.

Отбор проб проводят с концентрированием на фильтр.

Нижний предел измерения содержания супражила $WP-5~\mathrm{mkr}$ в анализируемом объеме пробы.

Нижний предел измерения концентрации супражила WP в воздухе 0.25 мг/м^3 (при отборе 20 дм^3 воздуха).

Метод специфичен в условиях производства пестицидов на стадии загрузки.

Измерению не мешают сопутствующие вещества – сульфат натрия и сульфит натрия.

5. Средства измерений, вспомогательные устройства, материалы, реактивы

При выполнении измерений применяются следующие средства измерений, вспомогательные устройства, материалы, реактивы.

5.1. Средства измерений, вспомогательные устройства, материалы

Спектроф	ротометр	марки	СФ-46
A			

Аспирационное устройство, модель 822	ГОСТ 2.6.01—86
Фильтродержатель	ТУ 95-72-05—77
Колбы мерные, вместимостью 25 и 1 000 см ³	ΓΟCT 1770—74E
Пипетки, вместимостью $0,1,1,5$ и 10 см ³	ΓOCT 29227—91
Весы аналитические ВЛА-200	ΓΟCT 24104—88E
Кюветы с толщиной оптического слоя 10 мм	
Фильтры АФА-ВП-10	ТУ 95-743—80
Пробирки колориметрические с	
притертыми пробками,	
вместимостью 10 см ³	ΓOCT 25336—82E
Бюксы стеклянные, вместимостью 25 см ³	ΓΟCT 7148—70
Стеклянные палочки	ΓOCT 25336—82E

5.2. Реактивы

Супражил WP с содержанием основного	
вещества не менее 90,0 %	ТУ 76-287—99
Вода дистиллированная	ГОСТ 6709—72
Фиксанал соляной кислоты 0,1н раствор	ТУ 6-092540—72

Допускается применение иных средств измерений, вспомогательных устройств, реактивов и материалов с техническими и метрологическими характеристиками и квалификацией не хуже приведенных в разлеле.

6. Требования безопасности

- 6.1. При работе с реактивами соблюдают требования безопасности, установленные для работы с токсичными, едкими и легко-воспламеняющимися веществами по ГОСТ 12.1.005—88.
- 6.2. При проведении анализов горючих и вредных веществ должны соблюдаться требования противопожарной безопасности по ГОСТ 12.1.004—91.

6.3. При выполнении измерений с использованием спектрофотометра соблюдают правила электробезопасности в соответствии с ГОСТ 12.1.019—79 и инструкцией по эксплуатации прибора.

7. Требования к квалификации операторов

К выполнению измерений и обработке результатов допускаются лица с высшим или среднеспециальным образованием, имеющие навыки работы на спектрофотометре.

8. Условия измерений

- 8.1. Процессы приготовления растворов и подготовки проб к анализу проводят в нормальных условиях при температуре воздуха (20 ± 5) °C, атмосферном давлении 84,0—106,0 кПа и относительной влажности воздуха не более 80 %.
- 8.2. Выполнение измерений на спектрофотометре проводят в условиях, рекомендованных технической документацией к прибору.

9. Подготовка к выполнению измерений

Перед выполнением измерений проводят следующие работы: приготовление растворов, подготовка спектрофотометра, установление градуировочной характеристики, отбор проб.

9.1. Приготовление растворов

- 9.1.1. Основной стандартный раствор супражила WP в 0,1н растворе соляной кислоты с концентрацией 1 мг/см 3 готовят растворением 27,78 мг супражила WP (с учетом процента содержания основного вещества) в мерной колбе вместимостью 25 см 3 . Раствор устойчив в течение недели при хранении в холодильнике.
- 9.1.2. Стандартный раствор № 1 с концентрацией супражила WP 100 мгк/см^3 готовят разведением 2,5 см³ основного раствора 0,1 н соляной кислоты в мерной колбе вместимостью 25 см³. Раствор устойчив при хранении в холодильнике в течение недели.
- 9.1.3.~0,1~ н раствор соляной кислоты готовят следующим образом: содержимое фиксанала количественно переносят в мерную колбу вместимостью $1~000\text{cm}^3$ и доводят объем до метки дистиллированной водой.

9.2. Подготовка прибора

Подготовку спектрофотометра проводят в соответствии с руководством по его эксплуатации.

9.3. Установление градуировочной характеристики

Градуировочную характеристику, выражающую зависимость оптической плотности растворов от массы супражила WP, устанавливают по 6 сериям растворов из пяти параллельных определений для каждой серии согласно табл. 1.

Таблица 1 Растворы для установления градуировочной характеристики при определении Супражила WP

Номер стандарта	Стандартный раствор супражила WP № 1, см ³	0,1н раствор соляной кислоты, см ³	Содержание супражила WP в градуировочном растворе, мкг
1	0	5,0	0
2	0,05	4,95	5,0
3	0,1	4,9	10,0
4	0,2	4,8	20,0
5	0,3	4,7	30,0
6	0,4	4,6	40,0

Градуировочные растворы устойчивы в течение часа.

Измеряют оптическую плотность растворов в кюветах с толщиной оптического слоя 10 мм при длине волны 230 нм по отношению к раствору сравнения, не содержащему определяемого вещества (раствор $N \ge 1$ по таблице).

Строят градуировочный график: на ось ординат наносят значения оптических плотностей градуировочных растворов, на ось абсцисс – соответствующие им величины содержания супражила WP в градуировочном растворе (мкг).

Проверка градуировочного графика проводится 1 раз в три месяца или в случае использования новой партии реактивов, изменения условий анализа, после ремонта прибора.

9.4. Отбор пробы воздуха

Воздух с объемным расходом 2 дм 3 /мин аспирируют через фильтр АФА-ВП-10, помещенный в фильтродержатель. Для измерения 1 / $_2$ ПДК супражила WP необходимо отобрать 20 дм 3 воздуха. Отобранные пробы могут храниться в течение месяца в пробирках с притертыми пробками в холодильнике.

10. Выполнение измерения

Фильтр с отобранной пробой помещают в химический стакан вместимостью $25~{\rm cm}^3$ и заливают $5~{\rm cm}^3~0,1$ н раствора соляной кислоты.

Оставляют на 10 мин, периодически помешивая стеклянной палочкой для лучшего растворения вещества. Степень десорбции супражила WP с фильтра 98 %. Затем фильтр отжимают и удаляют. Раствор количественно переносят в пробирку вместимостью $5 \, \text{cm}^3$ и доводят объем раствора до $5 \, \text{cm}^3 \, 0,1$ н раствором соляной кислоты.

Оптическую плотность анализируемых растворов измеряют в кювете с толщиной поглощающего слоя 10 мм при длине волны 230 нм по отношению к раствору сравнения, который готовят одновременно и аналогично пробам, используя чистый фильтр.

Количественное содержание супражила WP в анализируемом растворе (мкг) определяют по предварительно построенному градуировочному графику.

11. Вычисление результатов измерения

Массовую концентрацию супражила WP в воздухе (C, мг/м³) вычисляют по формуле:

$$C = \frac{a}{V}$$
, где

a — содержание вещества в анализируемом объеме раствора пробы, найденное по градуировочному графику, мкг;

V — объем воздуха (дм 3), отобранного для анализа и приведенного к стандартным условиям (прилож. 1).

12. Оформление результатов анализа

Результат количественного анализа представляют в виде:

$$(C \pm 0.01 \cdot \delta_{\Sigma} \cdot C)$$
 мг/м³, $P = 0.95$, где

 δ_{Σ} – относительное значение суммарной погрешности (табл. 2);

C — значение массовой концентрации анализируемого компонента в пробе.

13. Контроль погрешности методики КХА

Значения характеристики, норматива контроля погрешности и норматива контроля воспроизводимости приведены в табл. 2.

Таблица 2

Путогуорду	Наименование метрологической характеристики					
Диапазон определяемых концентраций супражила WP, мг/м ³	тельного значения	Норматив контроля сходимости, d , %, $(P = 0.95)$	Норматив контроля погрешности, K_{π} , %, $(P=0.90)$	Норматив контроля воспроизводимости, D , $\%$, $(P = 0.95)$		
0,25—2,0	25,0	16,2	29,5	29,4		

Метрологические характеристики приведены в виде зависимости от значения массовой концентрации анализируемого компонента в пробе – C.

13.1. Контроль погрешности

Контроль погрешности выполняют в одной серии с КХА рабочих проб.

Образцами для контроля являются реальные пробы воздуха рабочей зоны. Объем отобранной для контроля пробы должен соответствовать удвоенному объему, необходимому для проведения анализа по методике.

После отбора пробы экстракт с фильтра делят на две равные части, первую из которых анализируют в точном соответствии с прописью методики и получают результат анализа исходной рабочей пробы $-C_1$. Во вторую часть делают добавку анализируемого компонента (X). Величина добавки должна соответствовать 50—150 % концентрации анализируемого компонента в воздухе.

Пробы анализируют в точном соответствии с данной методикой. Результаты измерений C_1 и C_2 получают в одинаковых условиях, т. е. одним аналитиком с использованием одного набора мерной посуды, одной партии реактивов и т. д.

Решение об удовлетворительной погрешности принимают при выполнении условия:

$$/C_1 - C_2 - X/ \le K_{\text{m}}$$
, где

 C_I – результат анализа рабочей пробы;

 C_2 – результат анализа рабочей пробы, разбавленной в два раза;

Х – величина добавки анализируемого компонента;

 K_{π} – норматив контроля погрешности (табл. 2).

При превышении норматива контроля процедуру повторяют. При повторном превышении норматива выясняют причины, приводящие к неудовлетворительным результатам, и устраняют их.

Контроль погрешности проводят не реже 1 раза в 3 месяца. Обязательно проведение контроля после ремонта прибора, при смене партий реактивов.

13.2. Контроль воспроизводимости

Контроль воспроизводимости выполняют, используя реальные пробы воздуха. При этом отбор, подготовку пробы, выполнение измерений и обработку результатов выполняют в точном соответствии с данной МВИ, максимально варьируя условия анализа: два аспиратора при одновременном отборе проб воздуха из одного места отбора, разные приборы, разные операторы, разные наборы посуды и реактивов.

Результаты контрольной процедуры (\mathcal{I}_{κ}) признают удовлетворительным, если выполняется условие:

$$A_{\kappa} = 2/X_1 - X_2/$$
 < 0,01D $\cdot |X_1 + X_2|$, где

 X_1 и X_2 – результаты измерений массовой концентрации анализируемого компонента, мг/м³;

D – норматив контроля воспроизводимости (табл. 2).

При превышении норматива контроля воспроизводимости эксперимент повторяют. При повторном превышении указанного норматива, выясняют причины, приводящие к неудовлетворительным результатам, и устраняют их.

Контроль проводят не реже 1 раза в 3 месяца. Обязательно проведение контроля после ремонта прибора, при смене партии реактивов.

14. Нормы затрат времени на анализ

Для проведения серии анализов из 6 проб требуется 1 ч.

Методические указания разработаны НИЦ «ЭКОС», Москва (В. А. Смирнов).

Приложение 1

Приведение объема воздуха к стандартным условиям

Приведение объема воздуха к стандартным условиям (температура $20~^{\circ}$ С и давление 101,33~кПа) проводят по формуле:

$$V_{20} = \frac{V_t \cdot (273 + 20) \cdot P}{(273 + t) \cdot 10133}$$
, где

 V_t – объем воздуха, отобранного для анализа, дм³;

P – барометрическое давление, кПа (101,33 кПа = 760 мм рт. ст.);

t – температура воздуха в месте отбора пробы, °C.

Для удобства расчета V_{20} следует пользоваться таблицей коэффициентов (прилож. 2). Для приведения воздуха к стандартным условиям надо умножить V_t на соответствующий коэффициент.

Приложение 2 Коэффициенты для приведения объема воздуха к стандартным условиям

Давление Р, кПа/мм рт. ст.										
t° C	97,33/730	97,86/734	98,4/738	98,93/742	99,46/746	100/750	100,53/754	101,06/758	101,33/760	101,86/764
-30	1,1582	1,1646	1,1709	1,1772	1,1836	1,1899	1,1963	1,2026	1,2058	1,2122
-26	1,1393	1,1456	1,1519	1,1581	1,1644	1,1705	1,1768	1,1831	1,1862	1,1925
-22	1,1212	1,1274	1,1336	1,1396	1,1458	1,1519	1,1581	1,1643	1,1673	1,1735
-18	1,1036	1,1097	1,1158	1,1218	1,1278	1,1338	1,1399	1,1460	1,1490	1,1551
-14	1,0866	1,0926	1,0986	1,1045	1,1105	1,1164	1,1224	1,1284	1,1313	1,1373
-10	1,0701	1,0760	1,0819	1,0877	1,0986	1,0994	1,1053	1,1112	1,1141	1,1200
-6	1,0540	1,0599	1,0657	1,0714	1,0772	1,0829	1,0887	1,0945	1,0974	1,1032
-2	1,0385	1,0442	1,0499	1,0556	1,0613	1,0669	1,0726	1,0784	1,0812	1,0869
0	1,0309	1,0366	1,0423	1,0477	1,0535	1,0591	1,0648	1,0705	1,0733	1,0789
+ 2	1,0234	1,0291	1,0347	1,0402	1,0459	1,0514	1,0571	1,0627	1,0655	1,0712
+6	1,0087	1,0143	1,0198	1,0253	1,0309	1,0363	1,0419	1,0475	1,0502	1,0557
+10	0,9944	0,9999	0,0054	1,0108	1,0162	1,0216	1,0272	1,0326	1,0353	1,0407
+14	0,9806	0,9860	0,9914	0,9967	1,0027	1,0074	1,0128	1,0183	1,0209	1,0263
+18	0,9671	0,9725	0,9778	0,9830	0,9884	0,9936	0,9989	1,0043	1,0069	1,0122
+20	0,9605	0,9658	0,9711	0,9783	0,9816	0,9868	0,9921	0,9974	1,0000	1,0053
+22	0,9539	0,9592	0,9645	0,9696	0,9749	0,9800	0,9853	0,9906	0,9932	0,9985
+24	0,9475	0,9527	0,9579	0,9631	0,9683	0,9735	0,9787	0,9839	0,9865	0,9917
+26	0,9412	0,9464	0,9516	0,9566	0,9618	0,9669	0,9721	0,9773	0,9799	0,9851
+28	0,9349	0,9401	0,9453	0,9503	0,9555	0,9605	0,9657	0,9708	0,9734	0,9785
+30	0,9288	0,9339	0,9391	0,9440	0,9432	0,9542	0,9594	0,9645	0,9670	0,9723
+34	0,9167	0,9218	0,9268	0,9318	0,9368	0,9418	0,9468	0,9519	0,9544	0,9595
+38	0,9049	0,9099	0,9149	0,9199	0,9248	0,9297	0,9347	0,9397	0,9421	0,9471

Приложение 3

Указатель основных синонимов, технических, торговых и фирменных названий веществ

	стр.
1. Димезон S	74
2. Индометацин	170
3. Имипротрин	97
4. Метомил	138
5. Метсульфурон-метил	146
6. Мирамистин	80
7. Ортофталевый альдегид	21
8. Пероксигидрат фторида калия	113
9. Перфтор-2-метил-3-окса-октановая кислота	162
10. Сульфенамид Т	88
11. Супражил ^{MNS} / ₉₀	121
12. Супражил WP	37
13. Тетраацетилэтилендиамин	29
14. Трибенуронметил	154
15. Хладон 227-еа	64
16. Цетилпиридиний хлорид моногидрат	45
17. Циклобутанкарбонитрил	129
18. Щавелевая кислота дигидрат	178
19. Этиленмочевина	105