4.2. МЕТОДЫ КОНТРОЛЯ. БИОЛОГИЧЕСКИЕ И МИКРОБИОЛОГИЧЕСКИЕ ФАКТОРЫ

Методы микробиологического измерения концентрации клеток мицелиального гриба *Trichoderma longibrachiatum* TW-420 BKM F-3880D – продуцента целлюлаз, β-глюканазы и ксиланазы в атмосферном воздухе населенных мест и воздухе рабочей зоны

Сборник методических указаний по методам контроля МУК 4.2.3034—12; 4.2.3035—12

Издание официальное

Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека

4.2. МЕТОДЫ КОНТРОЛЯ. БИОЛОГИЧЕСКИЕ И МИКРОБИОЛОГИЧЕСКИЕ ФАКТОРЫ

Методы микробиологического измерения концентрации клеток мицелиального гриба *Trichoderma longibrachiatum* TW-420 BKM F-3880D — продуцента целлюлаз, β-глюканазы и ксиланазы в атмосферном воздухе населенных мест и воздухе рабочей зоны

Сборник методических указаний по методам контроля МУК 4.2.3034—12; 4.2.3035—12

ББК 51.21 М54

М54 Методы микробиологического измерения концентрации клеток мицелиального гриба *Trichoderma longibrachiatum* TW-420 ВКМ F-3880D — продуцента целлюлаз, β-глюканазы и ксиланазы в атмосферном воздухе населенных мест и воздухе рабочей зоны: Сборник методических указаний по методам контроля.—М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2012.—16 с.

ISBN 978-5-7508-1127-4

- 1. Разработаны ГБОУ ВПО «Российский национальный исследовательский медицинский университет им Н. И. Пирогова» Минздрава России (д.б.н. Н. И. Шеина).
- 2. Методические указания одобрены и рекомсндованы секцией «Гигиенические аспекты биотехнологии и микробного загрязнения окружающей среды» Проблемной комиссии «Научные основы гигиены окружающей среды».
- 3. Утверждены и введены в действие Руководителем Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека. Главным государственным санитарным врачом Российской Федерации Г. Г. Онищенко 20 июля 2012 г.
 - 4. Введены впервые.

ББК 51.21

Редактор Л. С. Кучурова Технический редактор Е. В. Ломанова

Подписано в печать 9.11.12

Формат 60х88/16

Тираж 200 экз.

Печ. л. 1.0 Заказ 64

Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человска 127994. Москва, Вадковский пер., д. 18, стр. 5, 7

Оригинал-макет подготовлен к печати и тиражирован отделом издательского обеспечения Федерального центра гигиены и эпидемиологии Роспотребнадзора 117105, Москва, Варшавское ш., 19а Отделение реализации, тел./факс 952-50-89

© Роспотребнадзор, 2012 © Федеральный центр гигиены и эпидемиологии Роспотребнадзора, 2012

Содержание

Метод микробиологического измерения концентрации клеток мицелиального гриба <i>Trichoderma longibrachiatum</i> TW-420 BKM F-3880D — продуцента целлюлаз, β-глюканазы и ксиланазы в атмосферном воздухе населенных мест: МУК 4.2.3034—12	.4
Метод микробиологического измерения концентрации клеток мицелиального гриба <i>Trichoderma longibrachiatum</i> TW-420 BKM F-38801) — продуцента целлюлаз, β-глюканазы и ксиланазы в воздухе рабочей	
зоны: МУК 4.2.3035—12	1

УТВЕРЖДАЮ

Руководитель Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главный государственный санитарный врач Российской Федерации

Г. Г. Онишенко

20 июля 2012 г.

Дата введения: с момента утверждения

4.2. МЕТОДЫ КОНТРОЛЯ. БИОЛОГИЧЕСКИЕ И МИКРОБИОЛОГИЧЕСКИЕ ФАКТОРЫ

Метод микробиологического измерения концентрации клеток мицелиального гриба *Trichoderma longibrachiatum* TW-420 BKM F-3880D — продуцента целлюлаз, β-глюканазы и ксиланазы в воздухе рабочей зоны

Методические указания МУК 4.2.3035—12

1. Общие положения и область применения

Настоящие методические указания устанавливают методику проведения микробиологического количественного анализа концентрации клеток мицелиального гриба *Trichoderma longibrachiatum* TW-420 BKM F-3880D — продуцента целлюлаз, β-глюканаз и ксиланаз в воздухе рабочей зоны в диапазоне концентраций от 50 до 50 000 клеток в 1 м³ воздуха.

Методические указания разработаны в соответствии с требованиями ГОСТ 12.1.005—88 «ССБТ. Воздух рабочей зоны. Общие санитарногигиенические требования» и ГОСТ Р8.563—96 «Методики выполнения измерений».

Методические указания предназначены для применения в организациях Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, а также в санитарных лабораториях биотехнологических предприятий, микробиологических лабораториях научно-исследовательских институтов, работающих в области гигиены окружающей среды и аккредитованных в установленном порядке на право проведения микробиологических исследований.

2. Биологическая характеристика мицелиального гриба Trichoderma longibrachiatum TW-420 BKM F-3880D и его гигиенический норматив

Штамм мицелиального гриба *Trichoderma longibrachiatum* TW-420 ВКМ F-3880D является продуцентом комплекса целлюлаз, β-глюканаз и ксиланаз. Получен с помощью методов многоступенчатого мутагенеза и селекции из исходной культуры *Tr. longibrachiatum* TW-307 ВКМ F-3865D. Депонирован во Всероссийской коллекции микроорганизмов Института биохимии и физиологии микроорганизмов им. Г. К. Скрябина РАН под номером ВКМ F-3880D.

Растет на агаризованных средах (Мальц-агар, глюкозо-картофельный агар, среда Чапека с дрожжевым автолизатом, сусло-агар) при 129—34 °C в течение 7 суток, рН 3,5—5,0.

При росте на Мальц-агаре диаметр колоний достигает 80—90 мм на 7-е сутки при росте при *t* 25 °C. Мицелий развит преимущественно субстратный, воздушный мицелий — скудный, белого цвета. Цвет колонии первоначально белый, затем при формировании спор — зеленый. Обратная сторона колоний имеет светло-зеленовато-желтоватую окраску.

При микроскопировании штамм имеет конидии, которые формируются в многочисленных компактных подушечках диаметром до 2 мм. Конидиеносцы бесцветные, гладкостенные формируются на субстратном мицелии, главные ветви которого длинные и прямые, иногда извитые. Боковые ветви короткие, формируются через неравные интервальпод углом к главным ветвям. Фиалиды одиночные, булавовидные или бутыловидные, размер 5—10 × 2—3 мкм. Конидии одноклеточные, зеленоватые, гладкостенные, эллипсоидные размером 4—7 × 2—4 мкм собраны в мелкие головки на вершинах фиалид.

3. Пределы измерений

Методика обеспечивает выполнение измерений количества клеток плесневого гриба в воздухе рабочей зоны в диапазоне концентраций от 50 до 50 000 клеток в 1 м³ воздуха при доверительной вероятности 0,95.

4. Метод измерений

Метод основан на аспирации из воздуха клеток плесневого гриба на поверхность плотной питательной среды и подсчета выросших колоний по типичным культурально-морфологическим и физиолого-биохимическим признакам.

5. Средства измерений, вспомогательные устройства, реактивы и материалы

При выполнении измерений применяют следующие средства измерений, вспомогательные устройства и материалы.

5.1. Средства измерений, вспомогательные устройства, материалы		
Импактор микробиологический «Флора – 100»	TY 9443-001-05031637—02	
Прибор для бактериологического анализа		
воздуха, модель 818		
(щелевой прибор Кротова)	ТУ 64-12791—77	
Прибор MAS – 100 ЕСО фирмы Merk (Герма-		
ния) для отбора проб воздуха		
Термостаты электрические суховоздушные		
или водяные		
Автоклав электрический	ГОСТ 9586—75	
Бокс, оборудованный бактерицидными лампами		
Холодильник бытовой		
Весы лабораторные аналитические типа ВЛА-200		
Микроскоп биологический с иммерсионной		
системой типа «Биолам» Л-211		
Лупа с увеличением ×10	ГОСТ 25706—83	
Чашка Петри бактериологические плоскодонные		
стеклянные диаметром 90 мм	ГОСТ 23932—90	
Пробирки бактериологические П1 и П2		
вместимостью 15 и 20 мл	ГОСТ 25336—82	
Пипетки мерные на 1,5 и 10 мл	ГОСТ 10515—75	
Пипетки мерные на 1, 5, и 10 мл	ΓΟCT 1770—74	
Колбы конические вместимостью 250 и 500 мл	ГОСТ 1770—74	
Секундомер	ГОСТ 9586—75	
Барометр	ГОСТ 24696—79	
Марля медицинская	ГОСТ 9412—77	
Вата медицинская гигроскопическая	ГОСТ 25556—81	
5.2. Реактивы, растворы		
Агар микробиологический	ГОСТ 17206—84	
D-Глюкоза	ГОСТ 6038—79	
(возможно заменить раствором глюкозы для		
инъекций)		
Вода дистиллированная	ГОСТ 6709—72	
Спирт этиловый ректификат	ГОСТ 5962—67	
Кислота молочная пищевая	ГОСТ 490—79	
(для подкисления среды и подавления		
посторонней бактериальной флоры)		
Глюкозо-картофельный агар, г/л (очищенный		
картофель – 200, агар – 18—20, рН 4,5—5,0,		
режим стерилизации 1,1—1,2 ати в течение		
30 мин, глюкоза – 15—20 перед использованием)		

Среда Гетчинсона. г/л ($KH_2PO_4-0.1$; NaCl-0.1; $CaCl_2-0.1$; $FeCl_3-0.1$; $MgSO_4\times7H_2O-0.3$; $NaNO_3-2.5$; arap-2.0; дистиллированная вода) 0.5%-й водный раствор карбоксиметилцеллюлозы (KML), вязкость μ 10 мПас, t 25 °C, вискозиметр Брукфильда LVF 1 %-й раствор Конго Красного (congo rot)

6. Требования безопасности

При выполнении измерений концентрации клеток штамма-продуцента в воздухе рабочей зоны соблюдают следующие требования.

- 6.1. СП 1.3.2322—08 «Безопасность работы с микроорганизмами III—IV групп патогенности и гельминтами».
- 6.2. ГОСТ 12.1.005—88 «Правила техники безопасности при работе с химическими реактивами».
- 6.3. ГОСТ 12.1.019—79 «Электробезопасность при работе с электроустановками» и инструкции по эксплуатации прибора.
- 6.4. Руководство «Положение об организации работы по технике безопасности в микробиологической промышленности» (1980), «Инструкции по устройству, требованиям безопасности и личной гигиены при работе в микробиологических лабораториях предприятий микробиологической промышленности» (1977).
- 6.5. Все виды работ с реактивами проводят только в вытяжном шкафу при работающей вентиляции, работа с биологическим материалом осуществляется в боксе, оборудованном бактерицидными лампами.

7. Требования к квалификации операторов

К выполнению измерений и обработке их результатов допускают лиц с высшим или средним специальным образованием, прошедших соответствующую подготовку и имеющих навыки работы в области микробиологических исследований.

8. Условия измерений

Процессы приготовления растворов и подготовки проб к анализу проводят в нормальных условиях при температуре воздуха (20 ± 5) °C, атмосферном давлении (760 ± 20) мм рт. ст. и влажности воздуха не более 80 %.

9. Проведение измерения

9.1. Условия отбора проб воздуха

Для определения концентрации клеток мицелиального гриба воздух аспирируют при помощи пробоотборника «Флора» со скоростью 100 л/мин на поверхность плотной питательной среды. Время аспирации воздуха (1—10 мин) зависит от предполагаемой концентрации клеток штамма-продуцента и от марки пробоотборника.

Аппарат перед каждым отбором пробы воздуха тщательно протирают спиртом. Особенно тщательно обрабатывают поверхность подвижного диска и внутреннюю стенку прибора, наружную и внутреннюю стенку крышки. На подвижной диск устанавливают подготовленную чашку Петри со средой, одновременно снимая с нее крышку. Прибор закрывают. Соприкосновение крышки прибора со средой недопустимо. После отбора пробы воздуха и остановки диска, прибор открывают, быстро снимают чашку Петри и закрывают крышкой от данной чашки. На дне чашки Петри стеклографом отмечают точку контроля, время аспирации и дату отбора пробы.

9.2. Выполнение анализа

При выполнении анализа воздуха прямым методом глюкозо-картофельный агар расплавляют, остужают до 50—60 °С, добавляют глюкозу из расчета 15—20 г/л и молочную кислоту из расчета 2,0 мл на 500 мл среды (для подкисления среды и подавления посторонней бактериальной микрофлоры), тщательно перемешивают и разливают в чашки Петри.

Чашки с застывшей средой помещают в термостат на сутки при температуре 37 °C, после чего проросшие чашки бракуют, стерильные чашки используют для контроля воздуха. После отбора проб воздуха чашки Петри помещают в термостат на 29 °C. Через 4—7 суток производят подсчет выросших колоний по культурально-морфологическим признакам и характерной окраске колоний микромицета с обратной стороны чашки.

При выполнении анализа дополнительным методом пробы воздуха отбирают на среду Гетчинсона с добавлением 0,5 %-й карбоксиметилцеллюлозы. Культивируют в термостате при t 28 °C в течение двух суток и проводят окрашивание 0,1 %-м раствором Конго красным. Учет колоний штамма производится по зонам просветления, образующимся в результате ферментации целлюлозы под действием комплекса целлюлаз.

Ростовые свойства всех используемых питательных сред должны быть проверены в соответствии с «Требованиями к ростовым свойствам питательных сред» (Государственная Фармакопея СССР, изд. XI, вып. 2, с. 208), что позволит более полно оценить пределы ошибки метода. Для этого эталонный музейный штамм-продуцент высевается на 2—3 чашки каждой используемой среды.

10. Вычисление результатов измерения

Расчет концентрации клеток продуцента в пересчете на 1 м³ воздуха производят по формуле:

$$X = \frac{N \cdot 1000}{V}$$
 кл./м³, где

Х – концентрация клеток продуцента в воздухе;

N-количество колоний продуцента, выросших на чашке;

1 000 - коэффициент пересчета на 1 м3 воздуха;

V – объем воздуха, л (произведение скорости на время аспирации).

В случае невозможности использования аппарата Кротова, рекомендуем применять метод седиментации клеток продуцента из воздуха непосредственно на чашки Петри с плотной питательной средой. Время отбора проб воздуха может составлять до 30 мин. При использовании этого метода пользуются следующим расчетом концентрации клеток продуцента.

Эмпирически установлено, что за 5 мин на площадь 100 см^2 оседает количество бактерий, содержащееся в 10 л воздуха, следовательно за 1 мин — количество бактерий из 2 л воздуха. Площадь чашки Петри диаметром 100 мм равна $78, 54 \text{ см}^2$. Составляя пропорцию определяем, что за 1 мин на стеклянную чашку Петри оседают клетки из 1,57 л/мин. Количество клеток в 1 м^3 воздуха определяем по вышеприведенной формуле, где $V = 1,57 \text{ л/мин} \times t$ (время аспирации, мин).

Предлагаемый метод является ориентировочным и может быть использовать как вспомогательный метод.

11. Оформление результатов измерений

Результаты измерений оформляют протоколом по форме.

Протокол №

количественного микробиологического анализа штамма Tr. longibrachiatum TW-420 BKM F-3880D в воздухе рабочей зоны

1. Дата проведения анализа 2. Рабочее место (профессия работающего) 3. Место отбора пробы (название и адрес организации, производство, технологическая стадия, точка отбора пробы) 4. Вид пробоотборника 5. Дата последней метрологической поверки оборудования для отбора проб 6. Питательная среда, время инкубации 7. Количественная и качественная характеристика выросших колоний (количество типичных колоний, морфологические признаки, окраска по Грамму и др.) 8. Результаты идентификации микроорганизмов с указанием метода 9. Результаты расчёта концентрации штамма 10. Соотношение полученных результатов с уровнем ПДКа в 11. Отбор пробы произведён (Ф. И. О., должность, дата, подпись) 12. Идентификация штамма и расчёт концентрации произведены (Ф. И. О., должность, дата, подпись)

Список литературы

- 1. ГОСТ 12.1.005—88 «ССБТ. Воздух рабочей зоны. Общие санитарногигиенические требования».
 - ГОСТ 8.563—96 «ГСИ. Методики выполнения измерений».
- Положение об организации работы по технике безопасности в микробиологической промышленности.
- 4. Инструкции по устройству, требованиям безопасности и личной гигиены при работе в микробиологических лабораториях предприятий микробиологической промышленности.